Fluorescence fluctuation microscopy: FRAP and FCS

Confocal laser scanning fluorescence microscope for the mobility analysis in living cells

Ensemble measurements of protein mobility and interactions

Wachsmuth, M., Caudron-Herger, M. and Rippe, K. (2008). Biochim. Biophys. Acta 1783, 2061-2079.

Methods comparison

FRAP (for <u>slow/immobile</u> particles, ~100 ms time resolution)

- diffusion coefficients
- rate constants (at immobile substrates)
- immobile fractions
- photoactivation instead of bleaching (koff measurements)

CP/FLIP (for <u>faster</u> particles)

- dissociation rate (at immobile substrates)

FCS (for <u>fast</u> particles, µs time resolution)

- diffusion coefficients
- rate constants (at mobile substrates)
- anomaly parameters
- concentrations

The problem: many things affect the observed mobility

Protein mobility and interactions in the cell

 $\mathsf{MSD} = 6 \ D \ t^{\alpha}$

Dependence of diffusion coefficient D and molecular mass *M* protein: $D \propto M^{-\frac{1}{3}}$ DNA: $D \propto M^{-\frac{1}{2}}$ double mass *M* => 0.8 fold lower *D* double mass *M* => 0.7 fold lower *D* Wachsmuth, M., Caudron-Herger, M. and Rippe, K. (2008). *Biochim. Biophys. Acta* **1783**, 2061-2079. Determining diffusion coefficient *D*, kinetic binding rates k_{on} and k_{off} , and the apparent equilibirium constant K_{eq}^*

Erdel, Müller-Ott, Baum, Wachsmuth & Rippe (2011) Chromosome Res 19, 99–115.

Pericentric heterochromatin (PCH) in mouse cells

Writing, reading and transmitting epigenetic signals

from Molecular Biology of the Cell Distinct chromatin states can be established and maintained via interlinked feedback loops

Colocalization of heterochromatin protein 1 (HP1), Suv39H1 histone methylase and H3K9 methylation

Fluorescence Recovery After Photobleaching (FRAP)

Fluorescence Recovery After Photobleaching (FRAP)

Protocol:

- 1. Bleach particles (with a laser)
- 2. Wait and watch during they diffuse away
- 3. Fit the fluorescence-over-time curve or profile

Source: Wikipedia

F example: ER marker protein

Reits et al. 2001 (From fixed to FRAP: measuring protein mobility and activity in living cells)

immobile protein

Typical FRAP curve

FRAP with fast binding

Fast binding: Reduction of the diffusion coefficient, **shape** of the curve remains **unchanged**

"Fast" means: Many binding events occur during translocations on the length scale of the bleach spot

Only one fit parameter: Effective diffusion coefficient

If *D* is known, the ratio of the rate constants is obtained

FRAP with slow binding

Long-lived binding events lead to different shape of recovery curve

Intensity analysis FRAP resolves HP1 diffusion and interactions on the 1 µm and second time scale

diffusion-reaction analysis (Sprague & McNally 2004, *Biophys. J.* **86**, 3473) yields $k_{off} = 0.15 \pm 0.07 \text{ s}^{-1}$ in heterochromatin

FRAP profile analysis yields an effective nuclear diffusion coefficient of $D_{\text{eff}} = 1.4 \ \mu \text{m}^2 \cdot \text{s}^{-1}$ of HP1 (10 μm and second scale)

Diffusion versus binding in FRAP profile analysis

Calculations Malte Wachsmuth

Mobility and interaction analysis in living cells

Fluorescence recovery after photobleaching (FRAP)

Fluorescence correlation spectroscopy (FCS)

Müller et al. (2009). *Biophys. J.* 97, 2876-2885; Erdel et al. (2011) *Chromosome Res* 19, 99-115.

Fluorescence correlation spectroscopy

The concept: measuring number fluctuations of fluorescent particles in the focus

Diffusion induces fluctuations of the number of molecules

Fluctuations of the particle number of a 1 nM rhodamine solution in dependence of the observation volume

Size [mm]	Volume [I]	particles	ΔΝ	ΔN/N [%]
10	10 ⁻³	6.023·10 ¹¹	776080	0.00013
1	10 ⁻⁶	6.023·10 ⁸	24541	0.0041
0.1	10 ⁻⁹	6.023·10 ⁵	776	0.129
0.01	10-12	602.3	24.5	4.075
0.001	10 -15	0.6023	0.776	128.9

FCS data analysis

We want to know:

- the average number of molecules in the focus \Rightarrow concentration
- the dwell time in the focus \Rightarrow diffusion coefficient

Results from FCS experiments

Theoretical approach - formulas

FCS – correlation function for free diffusion in 3D

FCS – correlation function for free diffusion in 3D

Probability to detect a particle **before** and **after** it has diffused for **time** τ

definition of the correlation function

 $G_{kl}(\mathbf{\tau}) = \frac{\int d^3 r_1 \int d^3 r_2 \Psi_k(\mathbf{r}_1) P(\mathbf{r}_1, \mathbf{r}_2, \mathbf{\tau}) \Psi_l(\mathbf{r}_2)}{\int d^3 r \Psi_k(\mathbf{r}) \int d^3 r \Psi_l(\mathbf{r})}$

correlation function

diffusion time, concentration, focal volume, structure parameter, focus radius

$$G_{kl}(\tau) = \frac{1}{cV_{\text{eff}}} \left(1 + \frac{\tau}{\tau_{\text{diff}}}\right)^{-1} \left(1 + \frac{1}{\kappa^2} \frac{\tau}{\tau_{\text{diff}}}\right)^{-1/2}$$

$$\tau_{\rm diff} = \frac{w_0^2}{4D}, \quad V_{\rm eff} = \pi^{3/2} w_0^2 z_0, \quad \kappa = \frac{z_0}{w_0}, \quad w_0^2 = \frac{w_k^2 + w_l^2}{2}$$

Determining diffusion coefficients

small molecules generate short fluctuations...

larger complexes generate longer fluctuations...

Measuring ligand binding affinity

Properties of ligand-receptor interactions: dissociation constant, reaction rates, concentrations

Fluorescence correlation spectroscopy (FCS) of the H3K9me3 histone methylase Suv39h1

FCS measurements at different locations in the cell

Pixel-wise Photobleaching Profile Evolution Analysis - 3PEA

Erdel & Rippe (2012). PNAS 109, E3221-30.

3PEA analysis of Snf2H chromatin remodeler: $D_{\text{eff}} = 6.5 \,\mu\text{m}^2 \,\text{s}^{-1} \,(\text{FRAP: } 0.7 \,\mu\text{m}^2 \,\text{s}^{-1})$

Wide-field verus confocal microscopy setup

Dynamic processes in the cell nucleus take place on the microsecond to hour time scale

Wachsmuth, M., Caudron-Herger, M. and Rippe, K. (2008). Biochim. Biophys. Acta 1783, 2061-2079.

	typical resolution	acquisition rate (frames/sec)	light exposure
wide field	250 nm (x,y) > 2 µm (z)	200	low
confocal	250 nm (x,y) 600 nm (z)	1-10	high
line scanner confocal	250 nm (x) 380 nm (y) 700 nm (z)	30	low

Typical values for diffusion coefficients in the nucleus

	D _{min} (µm² s⁻¹)	accesible corral radius	methods
chromatin/ telomeres	2·10 ⁻³ 4·10 ⁻⁴ 2·10 ⁻⁵	0.08 μm 0.2 μm 0.3-0.8 μm	CLSM, single particle tracking
transcription factor	10-15 (free) 0 - 0.01	up to 10 µm (nucleus)	FRAP (bound) FCS (free, transiently bound)
membrane proteins	2-20 (2-D)	10 µm (nuclear membrane)	FRAP FCS

Accessible range of diffusion coefficients for CLSM, FRAP and FCS measurments

	t _{min} / t _{max}	typical analysis volume	D _{min} / D _{max}
confocal (single particle tracking)	0.4-2 sec / infinite	10 x 10 µm (x,y) 600 nm (z)	0 µm² s ⁻¹ / 10 µm² s ⁻¹
FRAP	0.4-2 sec /	2 x 2 µm (x,y)	0 μm² s ⁻¹ /
	infinite	0.6 - 5 µm (z)	10 μm² s ⁻¹
FCS	1 µsec /	250 nm (x,y)	0.05 µm² s⁻¹ /
	1 sec	600 nm (z)	200 µm² s⁻¹