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The dynamic organization of the cell nucleus into subcom-

partments with distinct biological activities represents an

important determinant of cell function. Recent studies point to a

crucial role of RNA as an architectural factor for shaping the

genome and its nuclear environment. Here, we outline general

principles by which RNA organizes functionally different

nuclear subcompartments in mammalian cells. RNA is a

structural component of mobile DNA-free nuclear bodies like

paraspeckles or Cajal bodies, and is involved in establishing

specific chromatin domains. The latter group comprises largely

different structures that require RNA for the formation of active

or repressive chromatin compartments with respect to gene

expression as well as separating boundaries between these.
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Introduction
The mammalian cell nucleus has a complex dynamic

organization that integrates two apparently contradicting

functions: On the one hand, the genome has to be

protected from uncontrolled modifications that would

compromise its function, and it has to be reliably repli-

cated and segregated during cell division and meiosis. On

the other hand, the genome has to be remarkably plastic

to allow for the readout, processing, maintenance and

transfer of the information encoded in the DNA sequence

as needed for the cell to adopt different functional states.

The switching of cellular programs is tightly linked to the

regulation of gene expression, which in turn requires

corresponding changes in chromatin organization.

According to the current view, more than half of the

mammalian genome can be transcribed although only

1.2% code for amino acids in proteins [1]. Thus, the

nucleus has to provide an environment to promote or

repress transcription essentially throughout the complete
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genome. Interestingly, many aspects of the underlying

dynamic nuclear architecture involve RNA as an effector

molecule with structural functions. These RNAs operate

either by interacting directly or indirectly with chromatin

or participate in establishing DNA-free nuclear subcom-

partments, in which certain genome-associated activities

are concentrated.

The first studies on the association of RNA with chro-

matin date back to the 1960s. It was reported by Bonner

and co-workers that RNA represents a significant fraction

of chromatin [2]. The nature of the surprisingly short

�40 nt chromosomal RNAs identified in this early report

and its mode of interaction with chromatin via a proposed

covalent linkage to histones were controversially dis-

cussed [3,4]. Subsequent studies proposed a diverse set

of architectural functions of RNA in the nucleus, in-

cluding, for example, chromatin-associated RNAs as a

structural component of heterochromatin [5], a role for

RNA in eukaryotic chromosome structure via DNA–RNA

linkages [4], or RNA as a component of a nuclear matrix

[6,7,8]. However, during the 1960s to 1990s characterizing

structural functions of RNA in the nucleus faced many

technical difficulties with respect to systematically iden-

tifying the sequences of nuclear retained RNAs, and to

associate them with a specific phenotype. As reviewed

here, significant progress in both areas has been made in

recent studies that provide insight into the principles of

RNA-mediated nuclear architecture.

The structural functions of RNAs have been traditionally

assigned to non-coding RNAs (ncRNA) that are typically

classified into small (<30 nt) or long non-coding RNAs

(>200 nt). However, this classification is not particularly

instructive since both small and long non-coding RNAs

comprise very heterogeneous classes with diverse and

partly overlapping functions that are reviewed elsewhere

in this issue [9,10]. Furthermore, the coding versus non-

coding classification ignores the multifunctionality of

RNA transcripts [11�,12] (Figure 1): (i) A number of so

called non-coding RNAs have open reading frames

(ORFs), and it is difficult to exclude that these may be

translated at a certain development stage or in a specific

tissue. Indeed, it has been reported that peptides were

translated from rather short ORFs of some ‘non-coding’

RNAs [13]. (ii) Coding RNAs contain a significant amount

of non-coding sequence elements in their introns and 50-
untranslated and 30-untranslated regions (UTRs) that

possess regulatory function. Interestingly, a recent report

describes the separate expression of a large number of 30-
UTRs in human and mouse cells [14��]. These are likely

to be generated by post-transcriptional cleavage of the
Current Opinion in Genetics & Development 2012, 22:179–187
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Multifunctional RNA transcripts and their role in nuclear architecture. RNAs retained in the nucleus comprise both coding and non-coding primary and

processed transcripts. The different types of sequences are heterogeneous in length and seem to be associated with a variety of nuclear functions that

cannot be linked directly to their transcriptional origin. Therefore, a classification of RNA transcripts with nuclear architectural activity according to their

association with chromatin and their relation to the gene expression status is used here.
corresponding protein-coding sequences. (iii) While the

initial primary transcript may be ‘long’, it might be

processed or a mapping analysis might reveal that the

part relevant for the activity under investigation is sig-

nificantly shorter as, for example, demonstrated for the

RNA-directed DNA methylation of ribosomal RNA

(rRNA) genes [15��]. (iv) A structural function of coding

RNA transcripts in maintaining an open chromatin struc-

ture was reported [16��].

Accordingly, another classification is applied here to

discuss the architectural role of RNA in the nucleus

(Figures 1 and 2). The obvious first distinction is made

between RNAs that are instantaneously exported into

the cytoplasm versus those that remain at least transi-

ently in the nucleus to exert a structural function. These

nuclear-retained RNAs are either a component of mobile

nuclear bodies that are devoid of DNA or associate with

chromatin to establish domains with specific activities.
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The latter group is further divided according to their

gene expression status into repressive and active chro-

matin compartments. Such a large-scale bipartite organ-

ization of the genome has been demonstrated in a

number of studies, for example, a microscopy-based

three-dimensional analysis of gene clusters [17], chromo-

some conformation capture (3C) based genome-wide

interaction analysis [18], or the timing differences be-

tween early and late replicating DNA loci [19]. The

spatially segregated open and closed chromatin compart-

ments are not simply the result of active transcription.

Nuclear architecture actively contributes to determining

specific gene-expression programs, and thus shapes cel-

lular functions [20]. These considerations lead us to

define three subclasses of RNAs that determine large

scale chromatin states in mammalian cells: (i) RNAs that

form repressive chromatin compartments, (ii) RNAs that

organize boundary elements between regions that differ

in their gene expression status, and (iii) RNAs that
www.sciencedirect.com
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Figure 2
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Scheme of nuclear architecture with subcompartments that involve RNA for their structural integrity. These comprise DNA-free mobile nuclear bodies

(blue) and chromatin compartments. The latter are subdivided into transcriptionally active (red) and inactive (green) chromatin regions as well as the

boundaries between these. The structural organization of the nucleus shown in the scheme represents what is seen by high-resolution fluorescence

microscopy (e.g. ref. [69]). Note that the distribution of dense and open chromatin regions is strongly dependent on cell type and organism.
stabilize actively transcribed regions. In this context, it is

noteworthy that the mode of RNA interactions with

proteins and DNA displays a high structural variability.

As summarized in ref. [21], it involves interaction via a

DNA–RNA hybrid duplex, a DNA–DNA–RNA triplex,

non-covalent interactions with chromosomal proteins,

and possibly also covalent linkages as mentioned above

[2,4]. A number of studies relate the function of chro-

matin interacting RNAs to targeting posttranslational

histone and DNA modifications to specific genomic sites

(e.g. [9,10,15��,21]). While these modifications can

indirectly affect nuclear architecture [22], we focused

here on the direct links between nuclear architecture and

RNA.

RNA as an essential structural component of
mobile nuclear bodies
The nucleus harbors mobile nuclear interchromatin sub-

compartments referred to as nuclear bodies, in which a

diverse set of biological activities is enriched [23]. These

can translocate within the nucleus in the absence of any

specific interactions with the genome, and some of them

contain RNAs as constituting component. The prototypic
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example is the paraspeckle. Paraspeckles play a role in

regulation of gene expression via retaining certain mes-

senger RNAs (mRNAs) and are built around the long non-

coding Men e/b (also known as Neat1) RNA [24,25,26].

Interestingly, it was demonstrated recently [27��] for a

surprisingly large number of nuclear bodies that creating a

nuclear accumulation of specific coding or ncRNA mol-

ecules by tethering them in multiple copies to DNA is

sufficient to initiate their de novo formation: Paraspeckles

formed via the Men e/b ncRNA, SC35 domains (also

termed splicing speckles or interchromatin granules) via

spliced b-globin-MS2 pre-mRNA, Cajal bodies and

histone locus bodies via histone pre-mRNA, and nuclear

stress bodies via repetitive noncoding satellite III tran-

script. The role of Men e/b ncRNA in paraspeckle

assembly was dissected via induction of transcription

and the direct visualization of the recruitment of para-

speckle proteins [28�]. Together, refs. [27��] and [28�]
provide evidence that RNA transcripts can act as ‘seeds’

to recruit soluble RNA-binding nuclear body components

from the nucleoplasm and induce the formation of dis-

tinct types of nuclear bodies [23]. In addition to the

above-mentioned nuclear subcompartments, other
Current Opinion in Genetics & Development 2012, 22:179–187
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RNA-containing bodies have been identified based on

the local enrichment of certain RNA sequences within

the nucleus. One example is the Gomafu RNA, which is

found in distinct nuclear bodies distributed throughout

the nucleus of specific subsets of neurons [29]. Gomafu

bodies may play a role in RNA splicing since the Gomafu

RNA has tandem repeats of the SF1 splicing factor

binding sequence UACUAAC [30]. Another novel

nuclear body-like RNA domain contains GAA-repeat

sequences of �1.5 kb to �4 kb in length [31�]. These

foci are enriched in proteins identified previously also in

nuclear matrix preparations, which suggests that they

could exert a structural role for nuclear organization.

To some extent the (GAA)500-1300-containing nuclear foci

appeared to associate with GAA�TTC-repeat-containing

DNA regions. These sequences are known to have the

propensity to form DNA–RNA triplexes [32], which

might be a mode of interaction of these RNAs with

the genome. It is currently unclear if the (GAA)500–1300

foci represent mobile RNA-containing nuclear bodies

like those mentioned above as opposed to chromatin-

associated domains that are discussed in the following.

Repressive chromosome domains structured
by RNA
Several studies point to an important role of RNA in the

formation and maintenance of higher order chromatin

domains that are repressive with respect to their tran-

scriptional activity. As discussed in the following, this

function can involve a direct structural role of the RNA

itself or an indirect RNA-dependent recruitment of a

chromatin-structure modifying protein.

Pericentric, centromeric and telomeric domains

The targeting of architectural chromosomal proteins by

RNA has been reported for pericentric, centromeric and

telomeric heterochromatin domains: (i) Heterochromatin

protein 1 (HP1) is a factor involved in establishing and

maintaining the repressive state of pericentric hetero-

chromatin. Its localization to this region is guided by

major satellite repeat transcripts that bind to HP1 upon

post-translational modification of the protein with the

small ubiquitin-like modifier (SUMO) [33,34��]. (ii)

The binding of centromere protein C (CENP-C), a

protein necessary to induce the formation of a functional

centromere, is stabilized by single-stranded RNAs

[35�,36,37]. (iii) The interaction of telomere repeat factor

2 (TRF2), origin recognition complex (ORC) protein and

HP1 with telomere-repeat-encoding RNA (TERRA) has

been proposed to stabilize the structure of telomeres and

to facilitate heterochromatin formation [38�]. In these

cases, the RNA-protein interaction involves one or more

specific RNA-binding domains within the protein that

recognize RNA sequence and secondary structure motifs.

How the resulting protein–RNA complex interacts with

its specific genomic target is currently an open question.

It could involve formation of a DNA–RNA hybrid, a
Current Opinion in Genetics & Development 2012, 22:179–187 
DNA–RNA triplex or additional interaction of RNA with

chromosomal proteins.

Polycomb group protein-chromatin compartments

The polycomb group (PcG) proteins are enriched in

distinct subnuclear foci called PcG bodies (Figure 2).

In contrast to the mobile nuclear bodies discussed above

they assemble around their target genomic regions. A

local accumulation of a dense and repressive chromatin

state is inferred from correlative light-electron micro-

scopy analysis [39]. Recent evidence shows that the

polycomb repressive complex 1 and 2 (PRC1 and

PRC2) are guided by long ncRNAs to specific genomic

domains to negatively regulate gene expression

[40��,41�]. The RNA-induced targeting of PRC could

affect chromatin organization in several aspects. First,

the PRC-associated histone modification activities (e.g.

trimethylation of histone H3 at lysine 27) could induce a

repressive chromatin state via proteins that specifically

recognize negative chromatin marks as discussed pre-

viously [40��,41�]. Second, it was shown for the Drosophila
homologue that PRC1 itself compacts nucleosomal arrays

in vitro, and thus could directly exert a repressive struc-

tural function [42]. Third, RNA-induced targeting of

PRC complexes could modify the large-scale nuclear

architecture of the genome and affect gene expression.

Evidence that the latter mechanism is relevant comes

from three recent studies. In flies, long-range interactions

exist within the same chromosome arm between PcG-

bound interaction domains separated by megabases of

DNA [43]. Furthermore, Hox genes clusters are repressed

PcG bodies, and this three-dimensional organization of

PcG target genes stabilizes their epigenetic gene silen-

cing [44]. Interestingly, a related regulatory mechanism

exists in human cells that operates via modulation of the

RNA-binding specificity of Polycomb 2 (Pc2) protein via

(de)methylation of lysine residue 191 in response to

growth signals [45��]. It was shown that methylated

Pc2 binds preferentially to the TUG1 ncRNA and leads

to the repression of growth-control genes via their target-

ing to PcG bodies, in which TUG1 provides an RNA

scaffold. By contrast, unmethylated Pc2 binds to the

MALALT1/NEAT2 ncRNA in SC35 nuclear domains.

This switching of Pc2 RNA-binding specificity upon

demethylation modifies nuclear organization and relo-

cates growth-control genes to a nuclear environment that

promotes their expression.

The inactive X chromosome or Barr body

A well-known example for a transcriptionally repressive

chromatin compartment is the inactive X-chromosome in

female mammalian cells. It is readily identified as a so-

called Barr body on microscopy images using nucleic acid

stains, and localizes to the nuclear or nucleolar periphery.

The crucial role of the Xist ncRNA for determining

chromatin structure and nuclear organization of the inac-

tive X chromosome in mammals is well established and
www.sciencedirect.com
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reviewed in ref. [46]. Here, we refer only to the structural

aspects of the Xist-mediated chromatin reorganization,

which is tethered to the inactive X chromosome via the

YY1 transcription factor that is capable of binding both

RNA and DNA through different sequence motifs [47].

The inactive X chromosome was found to be organized

into subchromosomal domains separated by interchroma-

tin spaces with distinct compaction properties as revealed

by transmission electron and fluorescence microscopy

[48,49�]. The Xist-mediated silencing appears to be

associated with a chromosomal organization into gene-

rich domains depleted of long interspersed element

(LINE-1) repeats and gene-poor regions with an
Figure 3
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increased association with LINE-1 sequences [50]. A

3C analysis showed that Xist RNA is needed for the

characteristic higher order folding of the inactive X

chromosome, and acts as a global structural organizer

[51]. A role of PcG proteins in this function was proposed

that involves mediating long-range intrachromosomal

interactions. A link between Xist and PRC2 was demon-

strated recently in a study that reported the simultaneous

displacement of Xist and polycomb repressive complex

PRC2 via a locked nucleic acids competitor [52]. Thus,

PRC2 requires Xist to bind the X chromosome. Given the

above mentioned structural functions of PRCs for the

formation of repressive chromatin compartments it
bition

Current Opinion in Genetics & Development

icroinjection experiments show a function of RNA in large scale chromatin

een proposed that this activity could involve RNA as a structural

nome cross-linkers (red spheres) as depicted in the hypothetical model.

ranscription complexes is currently unknown. Interestingly, also nucleoli

 require RNA to maintain their structure. The specific inhibition of RNAP II

6��,66]. This could reflect a structural role of RNA in maintaining nucleolus

Current Opinion in Genetics & Development 2012, 22:179–187
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appears likely that these contribute to the specific three-

dimensional conformation adopted by the inactive X in

mammals.

RNA-mediated boundary/insulator
compartments
The CCCTC-binding factor (CTCF) transcription factor

is considered to be the prototypic member of proteins that

establish insulator or boundary elements to separate

repressive and active chromatin compartments. It acts

by promoting the formation of DNA loops, which is not

only important for its insulator function but also for the

clustering of active promoters [53,54]. Interestingly, chro-

matin interactions of CTCF are modulated by RNAs. It

was reported that the LINoCR ncRNA is involved in a

cascade of events that included epigenetic modifications

and nucleosome repositioning and lead to CTCF eviction

[55]. By contrast, the SRA ncRNA was proposed to

stabilize the interaction of CTCF with cohesion at certain

chromatin loci by binding both proteins simultaneously

[56�]. Finally, transcription initiation RNAs, which are

transcripts of 18 nt derived from sequences downstream

and close to RNAP II transcription start sites, were found

at genomic human and mouse CTCF binding sites [57]. It

was concluded that these RNAs affect the local epige-

netic modifications and with it CTCF binding. Thus,

RNAs are involved in both the establishment and resol-

ution of CTCF boundary elements between transcrip-

tionally repressive and active RNAP II compartments

[55,56�,57], and potentially also at ribosomal DNA within

the nucleolus [58]. Interestingly, a genome-wide analysis

revealed that in addition to CTCF also the YY1 DNA-

binding factor was enriched at human chromatin insula-

tors [59]. YY1 has the ability to bind both DNA and RNA

[47], raising the possibility that RNAs are also involved in

the association of YY1 at boundary elements.

RNA structures transcriptionally active
chromatin compartments
The above mentioned spatial bipartite organization of the

genome can be visualized as a chromatin distribution in

which more dense repressive chromatin domains are

surrounded by a loosely packed and transcriptionally

more active perichromatin compartment [60]

(Figure 2). In this model, perichromatin fibrils associate

with RNA polymerase II (RNAP II) and extend into

regions largely devoid of DNA. Several lines of evidence

indicate that RNAP II operates in a coordinated manner

within large complexes referred to as transcription fac-

tories [61]. These structures connect transcription and

genome organization since they promote intra-chromoso-

mal and inter-chromosomal linkages of actively described

genome loci [60,62,63,64�].

Recently, it was demonstrated by RNase microinjection

experiments that long nuclear-retained coding RNAs

maintain higher order chromatin in an open configuration,
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whereas the structure of heterochromatin domains

showed a reduced dependence on RNA [16��]. The

associated RNAs were found to be enriched in sequences

with long 30-UTRs, and proposed to maintain the organ-

ization of transcriptionally active chromatin compart-

ments by stabilizing RNAP II transcription factories

(Figure 3). In addition, it has been observed that inter-

ference with RNAP II transcription resulted in the dis-

solution of nucleoli into so-called ‘necklace’ structures

that were observed by electron microscopy [65] and

fluorescence microscopy [66] (Figure 3). This suggests

a putative role of some RNAP II transcripts in the

architectural organization and maintenance of the nucleo-

lus. This conclusion is supported by the finding that

centromere satellite RNAs promote the accumulation

and assembly of proteins at the nucleolus [35�].

Conclusions
The conformational flexibility of RNA is remarkable and

makes it an ideally suited macromolecule to structure

nuclear subcompartments. Single-stranded RNAs can

recognize a specific DNA sequence via formation of

DNA–RNA hybrids or associate to DNA duplexes in a

DNA:RNA triplex. At the same time, variations in its

sequence and/or secondary structure provide an essen-

tially unlimited number of possibilities to form sites for

the specific interaction with proteins. Thus, it is not

surprising that RNAs can shape the nucleus in a variety

of ways on different length scales ranging from single

nucleotide (nt) and histone modifications to the organiz-

ation of large nuclear subcompartments up to the size of a

whole chromosome during X-inactivation. Since RNA is

an essential factor for establishing transcription-

repressed/active chromatin compartments, as well as

the boundaries between these regions, its structural func-

tions emerge as an additional regulatory layer of gene

expression. Accordingly, the cell type dependent expres-

sion of these RNAs is expected to play an important role

for establishing specific cell functions during differen-

tiation. Recent findings demonstrate that transcription

factors involved in controlling pluripotency and differen-

tiation regulate the expression of large intergenic

ncRNAs and thus support this view [41�].

To directly assess a causative role of RNA for nuclear

architecture and chromatin organization various

approaches were used: (i) RNAs were exogenously intro-

duced to induce, for example, de novo nuclear body

assembly [27��,28�] or DNA methylation [15��]. (ii) In

the case of Xist, the comparison of inactive and active X

chromosomes within the same cell allows it to identify the

contribution of Xist to the inactive X structure [48,49�].
(iii) Knockdown by RNA interference can be used to

identify the associated structural changes, as, for example,

shown for the TUG1/MALAT1-dependent redistribu-

tion of growth-control gene promoters between PcG

bodies and SC35 domains [45��]. (iv) RNase treatment
www.sciencedirect.com
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of cells either via microinjection [16��] or addition to

permeabilized cells [33,34��] provides information on

the structural role of RNA in the nucleus.

While these approaches clearly demonstrate structural

RNA functions, the molecular mechanisms by which

RNA changes nuclear architecture remain to be further

elucidated in many instances. At the same time, the

number of RNAs with putative functions in genome

organization is increasing rapidly as genome-wide map-

ping of nuclear RNAs is becoming a routine task. Thus,

methodological advancements that help to dissect the

nuclear architecture phenotype of RNAs and/or provide

insights into their mode of operation are highly valuable.

In this respect, a number of technical advancements are

noteworthy: (i) Labeling or tethering RNAs via a MS2

protein recognition sequence and related approaches in

living cells has provided highly useful information in

terms of their nuclear localization and mobility [67] as

well as characterizing RNA found in nuclear bodies

[27��,28�]. (ii) The labeling of RNA with fluorescent

azides (or other functional groups) using ‘click’ chemistry

represents a new approach for tagging nascent RNAs in

the nucleus [68], but requires some further development

to be applicable in a native cellular environment. (iii)

Fluorescent labeling of RNAs in conjunction with recent

advancement in fluorescence microscopy imaging of

nuclear subcompartments [69,70] as well as emerging

methods for a spatially resolved analysis of chromatin

interactions [71] will provide further details on the archi-

tectural functions of RNA in the nucleus. (iv) RNA

interference knockdown approaches, although highly

informative [41�], may face difficulties owing to insuffi-

cient efficiencies as well as possible off-target effects. A

true knockout of a nuclear RNA can be achieved via site-

specific manipulation of the genome with zinc finger

nucleases. This has been demonstrated recently for

MALAT1 RNA and provided insight into the nuclear

functions of this highly abundant transcript [72�]. (v) The

biochemical separation of chromatin, nucleoplasm or

nucleoli is well established. Accordingly, these nuclear

fractions are readily accessible for investigations of their

RNA content. Purifying other more dynamic supramole-

cular complexes or specific genomic regions is much more

challenging. A particular impressive recent example in

this respect is the successful isolation of transcription

factories that allowed a characterization of their proteome

[64�]. Taking advantage of the progress currently made in

the areas mentioned above creates exciting opportunities

to advance our understanding of the various RNA net-

works that operate in the nucleus to shape genome

function via modulating nuclear architecture.
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