Targeting the alternative lengthening of telomeres (ALT) pathway in cancer cells

Karsten Rippe

Research Group *Genome Organization & Function*Deutsches Krebsforschungszentrum
& BioQuant, Heidelberg

Maintaining telomeres is crucial for unlimited proliferation

Alternative lengthening of telomeres (ALT)

Maintaining telomere length without telomerase in ~30% of sarcomas and ~10% of carcinomas

- DNA repair/recombination based mechanism
- heterogenous telomere repeat length
- ALT-associated PML Bodies (APBs)
 = complexes of PML bodies at telomeres

Metaphase FISH of telomere repeats

U2OS cells, ALT(+)

human lymphocytes, ALT(-)

Immunostaining of telomeres and PML

APBs in U2OS cells

High resolution imaging of APBs in U2OS cells

Lang, Jegou, Chung, Richter, Udvarhelyi, Münch, Cremer, Hemmerich, Engelhardt, Hell, & Rippe (2010). *J. Cell Science* **123**, 392-400.

Project workflow

current status

(1) The 3D co-localization screening platform

Automated high-content image analysis and APB quantification

SUMO ligase MMS21 knock-down inhibits APB formation

(2) Validating APB formation and function in a U2OS cell line with *lac*O repeat integration at three telomeres

integrated *lac*O repeats at telomere 12q, 11p and 6q

Protein interaction analysis in U2OS cells with fluorescence three-hybrid assay

Endogenous MMS21 is a component of de novo formed APBs

MMS21 is highly efficient in inducing APB formation

(3) De novo formation of APBs induces telomere elongation

De novo formed APBs are sites of DNA repair synthesis

Other functional assays after candidate protein knock-down/inhibition:

- telomere shortening
- induction of senescence/apoptosis in ALT(+) but not ALT(-) cells
- reduced telomere recombination (sister chromatid exchange)

(4) MMS21 activity assay with fluorescence readout for high-throughput screening of small molecule inhibitors

APBs and the ALT pathway an excellent target for novel therapeutic approaches against cancer

- ALT operates in 30% of sarcomas and 10% of carcinomas
- ALT can emerge during inhibition of telomerase in cancer cancer
- APBs are a unique target since they form only in cancer cells
- ALT(+) can be reliably diagnosed via APB quantification with our 3D platform
- APBs are functional intermediates of telomere elongation in ALT(+) cells
- MMS21 is a novel and highly promising drug target for inhibiting ALT
- 10 more protein component of functional APBs under investigation
- set of unique tools for validation of APB formation and ALT function available
- specificity: knock-down of APB protein MMS21 induces senescence and apopotosis in ALT(+) cells after ~20 divisions but has no effect in ALT(-) cells

...and
Sarah Osterwald
who breaks them!

Stefan Hell Hans Engelhardt Peter Lichter

at DKFZ & BioQuant