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The microscopic analysis of telomere features provides a wealth of information on the mechanism by
which tumor cells maintain their unlimited proliferative potential. Accordingly, the analysis of telomeres
in tissue sections of patient tumor samples can be exploited to obtain diagnostic information and to
define tumor subgroups. In many instances, however, analysis of the image data is conducted by manual
inspection of 2D images at relatively low resolution for only a small part of the sample. As the telomere
feature signal distribution is frequently heterogeneous, this approach is prone to a biased selection of the
information present in the image and lacks subcellular details. Here we address these issues by using an
automated high-resolution imaging and analysis workflow that quantifies individual telomere features
on tissue sections for a large number of cells. The approach is particularly suited to assess telomere
heterogeneity and low abundant cellular subpopulations with distinct telomere characteristics in a
reproducible manner. It comprises the integration of multi-color fluorescence in situ hybridization,
immunofluorescence and DNA staining with targeted automated 3D fluorescence microscopy and image
analysis. We apply our method to telomeres in glioblastoma and prostate cancer samples, and describe
how the imaging data can be used to derive statistically reliable information on telomere length distri-
bution or colocalization with PML nuclear bodies. We anticipate that relating this approach to clinical
outcome data will prove to be valuable for pretherapeutic patient stratification.

� 2016 Elsevier Inc. All rights reserved.
1. Introduction the shelterin protein complex [1]. These repeats and the bound
Telomeres are the ends of linear chromosomes and in humans
consist of the repetitive sequence 50-TTAGGG-30 that is bound by
proteins are critical for cells, since they prevent the DNA damage
signaling machinery from recognizing chromosome ends as
double-strand breaks. With every round of replication, however,
the number of telomeric repeats decreases. Once the telomere
length reaches a critical limit the cells either enter a state called
replicative senescence or go into apoptosis. Hence, the continuous
shortening of telomeres presents an effective control mechanism
to restrict a cell’s potential to divide. In order to proliferate indef-
initely, cancer cells have to circumvent this control point by
acquiring a telomere maintenance mechanism (TMM) to extend
their telomeres. In most tumors, the enzyme telomerase that cat-
alyzes the de novo synthesis of telomeric sequences is reactivated.
In addition to the deregulation of several hundred genes that have
been associated with aberrant telomerase activity, de-repression of
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telomerase can also be caused by mutations in the promoter of the
telomerase gene TERT as well as structural rearrangements of TERT
enhancers [2–4]. Apart from the various telomerase related path-
ways in cancer, alternative lengthening of telomeres (ALT) mecha-
nisms exist in 25–60% of sarcomas, 5–15% of carcinomas and �25%
of glioblastomas (GBMs) [5–7]. These operate in the absence of
telomerase and are based on DNA recombination and repair pro-
cesses. ALT has repressed telomerase gene expression as an overar-
ching characteristic feature and is typically associated with (i)
heterogeneous telomere length distribution within individual cells
and across tumor cell populations [8], (ii) formation of ALT-
associated promyelocytic leukemia (PML) nuclear bodies (APBs)
[9–11] that have PML protein in a spherical shell like structure
assembled around the telomere repeats [12], (iii) mutations in
genes like ATRX and TP53 as shown for cell lines [13] and through
deep-sequencing studies in GBMs, pancreatic neuroendocrine
tumors and in other cancers [5,14,15], (iv) extrachromosomal
telomeric repeats (ECTRs) [16,17], (v) variant telomeric repeat
sequences [18] as well as (vi) high levels of the non-coding telom-
eric RNA transcript TERRA [19–21].

Notably, the TMM type can define distinct tumor subgroups
that have been linked to patient subgroups and clinical parameters
in several entities [3,4,22–25]. Thus, understanding telomere
maintenance networks provides highly valuable and unique infor-
mation about the cancer disease state that can be exploited for
patient stratification and targeted therapies. This creates the need
for methods to identify telomere features and TMMs from primary
tumor samples. Often such samples are only available as formalin-
fixed, paraffin-embedded (FFPE) tissue sections. These sections are
collected either as individual samples or in the form of tissue
microarrays (TMAs), where several hundred patient samples are
combined on a single microscopy slide. The main method for
detection of telomeres on these tissue sections is fluorescence
in situ hybridization (FISH) with peptide nucleic acid (PNA) probes
that recognize the telomeric repeat sequence 50-TTAGGG-30 [26–
28]. Once these probes reach the inside of the nucleus they hybri-
dize with the complementary DNA strand with high affinity. The
intensity of the fluorescently labeled telomere probe is propor-
tional to the telomere repeat length. Frequently, telomere FISH
analysis is used to identify ALT positive tumors. This application
is based on the observation that so-called ultra-bright telomere
foci of sizes in the range of several lm show a high correlation with
the presence of ALT [5,29]. To this end, telomere FISH-stained
tumor sections are manually inspected for the occurrence of FISH
signals that are abnormally large and bright. However, it should
be noted that the biological source of these ultra-bright foci is
unclear. In addition, the current standard analysis uses 2D wide-
field microscopy images and lacks structural information along
the optical z-axis. Accordingly, in most studies tumor sections
are classified only in a qualitative or semi-quantitative manner
such as ‘short’ and ‘long’ telomeres. Such semi-quantitative analy-
ses have been used to identify correlations between telomere
length, tumor reoccurrences and patient survival in several cancer
types including prostate cancer, breast cancer and neuroblastoma
[27,30–32]. In other studies quantitative telomere FISH has been
applied [33]. However, these previous studies do not exploit the
increased accuracy of quantifying subcellular structures like
telomeres from confocal image stacks and lack automated image
analysis approaches, which makes it difficult to extend them to a
larger number of samples.

In our previous work we have introduced a platform for a 3D
imaging-based quantitative analysis of telomere features by confo-
cal laser scanning fluorescence microscopy (CLSM) [34,35]. In these
two studies an automated three-color confocal RNAi screening
platform was developed that allowed us to analyze telomeres
and colocalizations between telomeres and PML nuclear bodies
Please cite this article in press as: M. Gunkel et al., Methods (2016), http://dx.
(PML-NBs) in cell lines to investigate the ALT mechanism. Based
on image analysis the effect of RNAi-mediated knockdown of
specific genes on the number and size of telomeres, PML-NBs,
and APBs for each individual cell was determined. These features
were also related to the cell cycle state as determined by DNA con-
tent measured using DAPI staining. Both the image acquisition and
data analysis evaluated telomere features in three dimensions. As
an extension of this previous work, we here describe an integrated
approach to automatically quantify these telomere features on
tumor tissue sections and TMAs and illustrate its application to
pediatric glioblastoma (pedGBM) and prostate cancer samples.
The workflow comprises three main parts: (i) An optimized proto-
col for fluorescence labeling of tissue sections. (ii) A combination of
2D imaging with a wide-field setup and high-resolution multicolor
3D confocal fluorescence microscopy termed 3D-TIM for 3D Tar-
geted Imaging. An additional zoom-in step by single molecule
localization super-resolution microscopy can be included that pro-
vides an additional �10-fold improvement of the resolution. (iii)
Quantitative high-resolution 3D image analysis of telomere fea-
tures to yield statistically reliable measurements for primary
tumor samples. The resulting data can be related to clinical data
and provide information for pretherapeutic patient stratification.
2. Material and methods

2.1. Preparation of tissue sections

In the present work two types of samples were used, namely
tissue sections from pediatric glioblastoma samples and prostate
cancer TMAs. FFPE sections (5 lm thickness) were prepared in
the standard manner from pediatric glioblastoma tissue blocks.
Tissues were assessed for tumor cellularity prior to selection to
ensure the presence of >70% tumor cells. The TMA manufacturing
process for the prostate cancer samples studied here was as
described in detail previously [36].

2.2. PNA FISH on prostate cancer TMA

Prostate cancer tissue microarrays were deparaffinized by incu-
bating them three times in xylene for 10 min, incubated twice in
96% ethanol for 5 min and dried at 48 �C for 3 min. Hybridization
efficiency of the telomere repeat probe was improved for these
samples by including a proteinase K treatment with 1 mg/ml pro-
teinase K in TBS for 4 h at 37 �C. TMAs were washed twice with
H2O for 3 min, briefly immersed in 96% ethanol and air dried for a
few minutes. Denaturation and FISH probe hybridization was per-
formed as follows: PNA-Hyb solution (70% formamide, 10 mM Tris
HCl, pH 7.5, 0.1 lg/ml salmon sperm) containing 0.1 lM of a Cy3-
labeled telomere probe (CCCTAA)3 (TelC-Cy3, Panagene) and of a
FAM-labeled PNA probe (ATTCGTTGGAAACGGGA) that is directed
against the CENP-B binding site in the centromeric alpha satellite
DNA (CENP-B-FAM, PNA Bio) was added to the TMA, the slide was
heated to 80 �C for 5 min for denaturation and hybridization took
place at RT in a wet chamber. Next, the TMAs were washed twice
for 15 min in PNA wash buffer (70% formamide, 10 mM Tris-HCl,
pH 7.5), 1 min in 2� SSC, 5 min in 0.1� SSC at 55 �C, 2 � 5 min in
0.05% Tween-20/ 2� SSC and three times in PBS for 5 min. After
incubation in 70%, 85%, and 100% ethanol, the slide was air dried
and mounted with Prolong reagent including DAPI.

2.3. PNA FISH and immunofluorescence on FFPE pedGBM tissue
sections

Combined FISH and immunofluorescence was essentially car-
ried out as described in Ref. [28]. Paraffin was removed from the
doi.org/10.1016/j.ymeth.2016.09.014
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tissue slices of 5 lm thickness by melting at 65 �C and washing the
slides in xylene. After hydration through a graded ethanol series,
slides were incubated in 1% Tween-20 for 1 min before antigen
unmasking, for which the slides were placed in 10 mM sodium
citrate buffer (pH 6), boiled at 700 W in a microwave, and left at
120 W for another 9 min. After cooling down, incubation in
increasing ethanol series and a short period of air-drying, the
hybridization with the PNA FISH probes was performed. For this,
tissue sections were incubated with 0.1 lM of a Cy3-labeled
telomere probe (CCCTAA)3 (TelC-Cy3, Panagene). In experiments
where the centromeres were also visualized 0.1 lM of the FAM-
labeled CENP-B PNA probe (ATTCGTTGGAAACGGGA) was added
at the same time. The hybridization took place in 70% formamide,
10 mM Tris-HCl, pH 7.5, 0.1 lg/ml salmon sperm. First, slides were
denatured at 84 �C for 5 min and then left overnight at room tem-
perature in a wet chamber for hybridization. Next, slides were
washed three times for 15 min in PNA wash buffer, followed by
three 5 min-washes in PBST. Then the sections were incubated
with an anti-PML antibody (1:100, PG-M3, sc-966, Santa Cruz) in
PBS overnight at 4 �C in a wet chamber. Finally, they were washed
with PBST, incubated with the secondary antibody (here: anti-
mouse IgG coupled to Alexa647, Life Technologies) for 1 h at RT,
again washed with PBST and embedded with Prolong including
DAPI. Here, the immunofluorescence step is performed after the
FISH probe incubation, but we note that some other laboratories
use a different order, which works as well.

2.4. Image acquisition

A detailed description of the targeted image acquisition proce-
dure is provided as supplementary protocol 1 in the Supplemen-
tary Information. Wide-field images were acquired with a fully
automated Olympus IX81 ScanR screening microscope. A magnifi-
cation of 10x (Olympus UPlanSApo, NA 0.4) was chosen, resulting
in a field of view of 866 lm � 660 lm. The sample was illuminated
with a 150 W Hg/Xe mixed gas arc burner in combination with
appropriate filter combinations for DAPI and Cy3, respectively.
For the TMAs, 725 (29 � 25) adjacent fields of view were recorded
for cell selection, with overlapping areas of 30 lm in x- and y-
direction in order to enable automatic image stitching. In total an
area of �3.8 cm2 was imaged. For confocal imaging a Leica TCS
SP5 point scanning confocal microscope with additional MatrixS-
canner software was used. In all cases, a 63� objective lens (Leica
HCX PL APO, NA 1.40) was employed. Scan speed, pixel size, field of
view, z-stacks and channels were set for each sample appropri-
ately; typical values for high-resolved imaging of previously iden-
tified regions of interest (ROIs) were 200 Hz scan speed, 96 nm
pixel size at a field of view of 256 � 256 pixels, 41 axial layers at
250 nm spacing and 3 color channels with 2� frame averaging.
Single molecule localization microscopy (SMLM) was performed
with the same Leica TCS SP5 microscope used for confocal imaging,
equipped with an additional wide-field unit. For illumination, a
647 nm diode laser with 140 mW maximum power (Luxx, Omi-
cron, Rodgau-Dudenhofen, Germany) and a 561 nm solid state
laser with 156 mW maximum power (Jive, Cobolt, Solna, Sweden)
were used. The laser beam path was additionally coupled into the
microscope through the back illumination port by a switchable
mirror. Highly inclined and laminated optical sheet (HILO) illumi-
nation of the sample was controlled with an adjustable mirror.
Images were recorded by an sCMOS camera (Hamamatsu Orca
Flash 4.0) at 10 ms integration time and 5000 frames per dataset
with each maximum laser power in order to induce photoswitch-
ing. From the total field of view of 2048 � 2048, a sub-region of
200 � 200 pixel (20 � 20 lm2) was acquired. Prior to SMLM imag-
ing, a wide-field image was acquired at low laser intensities. The
area illuminated by high laser power was restricted to the target
Please cite this article in press as: M. Gunkel et al., Methods (2016), http://dx.
cell by an adaptable aperture in the illumination beam path in
order to protect surrounding structures from photobleaching.
SMLM datasets were reconstructed using the ImageJ plugin Thun-
derSTORM [37].
2.5. 3D image analysis

To adapt our previous work on the automatic extraction of
telomere features from cell line samples to tissue sections, an
advanced 3D model-based image analysis approach was devel-
oped. It accounts for the elevated levels of tissue sample hetero-
geneity, image artifacts and significant background levels
(Fig. 4A) [35,38]. The approach supports multiple microscopy
channels, where depending on the experiment a maximum of four
3D channels was used (i.e., centromeres, telomeres, PML-NBs, and
DAPI staining). To overcome artifacts caused by false positive seg-
mentation such as autofluorescent erythrocytes (Fig. 4E), first a 3D
artifact detection and segmentation step is performed. Artifacts
were determined in the telomere channel and segmented in 3D
by performing noise reduction (3D Gaussian filter) followed by
automatic thresholding (intermodes scheme), different morpho-
logical operations, and object filters. The inverted binary segmen-
tation result was used as a mask for subsequent segmentation of
the cell nuclei in the DAPI channel. For the 3D segmentation of
the cell nuclei an approach similar to Ref. [35] was used. It is based
on different automatic thresholding schemes (e.g., Otsu, entropy-
based) where the artifact mask was included. The nuclei segmen-
tation result defines a mask for the analysis of all other channels,
and it serves for normalization of analysis results with respect to
the volume of the cell nuclei. Depending on the experiment, a fur-
ther labeling step was carried out to enable a cell-based analysis.

For automatic quantification of relevant spots in the telomere,
PML and centromere channels, a series of 3D spot detection, 3D
model-based segmentation, and spot filtering was performed. To
automatically detect spot candidates, different image analysis
operations were applied to the 3D image data to obtain (coarse)
center positions of the spots: for noise reduction we used either
a 3D Gaussian filter or a 3D Laplacian of Gaussian filter. For sup-
pressing the image background all intensity values below a certain
threshold value, which was automatically computed for each
image from the image histogram based on the region of the cell
nuclei [38], were clipped. Finally, we performed a local maxima
search within cubic 3D ROIs, where the local maxima represent
the spot candidates. In the second step, each detected spot candi-
date was quantified based on 3D least-squares model fitting using
a 3D Gaussian parametric intensity model. A 3D Gaussian model
well represents the 3D intensity profile of the considered spots.
The model reads

gM;Gaussian3Dðx;pÞ ¼ a0 þ ða1 � a0ÞgGaussian3DðRðx;a; x0Þ;rxryrzÞ:

where x is a 3D position, Rðx;a; x0Þ a 3D rigid transform, a0 and a1
denote the local background and peak intensity levels, respectively,
and rx, ry, and rz are the standard deviations that represent the
three semi-axes describing the ellipsoidal shape of the spots. A
detailed description of the 3D model-based image analysis is pro-
vided as supplementary protocol 2 in the Supplementary Informa-
tion and in Ref. [38]. By fitting parametric intensity models that
describe the 3D intensity profiles by anisotropic 3D Gaussian func-
tion a subvoxel resolution of the model parameters including the 3D
position and semi-axes is obtained without the need for additional
deconvolution of the image. To enable accurate and robust fitting of
the variably sized telomere spots, the size of the 3D ROI used for
model fitting was automatically determined for each spot by a mul-
tiscale scheme similar to that described in Ref. [39] (Fig. 4B–D).
Here the spot size is coarsely determined by analyzing the results
doi.org/10.1016/j.ymeth.2016.09.014
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the active TMM in a given tumor sample is obtained.
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of a 3D Hessian-based blob detector at different image scales. In
contrast to the scheme in Ref. [39], which has been designed for lar-
ger spots of irregular shape, we here account for the heterogeneous
spot sizes by adapting the detector response. Finally, based on the
quantified model parameters, different spot filters were applied to
the fitting results to exclude invalid spots, e.g. those that signifi-
cantly deviate from a typical spot regarding their shape or size or
that displayed a low image contrast as they likely represent noise.
Since the image statistics vary among different images, a threshold
for the contrast based on the image histogram in the region of a spot
was computed. For calculating the integrated intensity of each fit-
ted spot, an analytic formula was derived that integrates the inten-
sities of the 3D Gaussian model over the ellipsoidal volume as
described in detail in the Supplementary Information. The analytic
solution of the triple integral reads

Integrated intensity ¼ 3avolð
ffiffiffiffiffiffiffiffiffi

2ep
p

erfð1=
ffiffiffi

2
p

Þ � 2Þ
2

ffiffiffi

e
p

where a ¼ ða1 � a0Þ denotes the spot contrast, vol ¼ rxryrz4p=3 is
the ellipsoidal volume of the spot, and erf denotes the error func-
tion. The integrated intensity is computed from the fitted model
parameters, i.e., the noisy image intensity values were not directly
used.

To determine cell-based co-occurrences as well as 3D colocal-
izations the results of pairs of spot channels were combined. The
accessibility of the PNA FISH probes (see Section 3.2, Fig. 2B) can
be assessed with a 3D cell-based co-occurrence analysis that quan-
tifies the number of centromeres and telomeres per cell nucleus.
For the quantification of colocalizations between telomeres and
PML-NBs the 3D spot geometries were obtained with subvoxel
accuracy from model fitting. These data were subsequently used
to determine the spatial overlap in 3D of the two spots from differ-
ent channels and the degree of colocalization [35] (Fig. 4F, G).
Please cite this article in press as: M. Gunkel et al., Methods (2016), http://dx.
Finally, results of all channels and analysis steps are combined
and all results for each single sample were summarized and further
statistics computed. The telomere length distribution was quanti-
fied for each sample based on the histogram of the integrated
intensities of all telomere spots, and normalized with respect to
the volume of DAPI staining.

For each experiment the same set of parameters was applied
and all images were analyzed in batch mode (running twelve jobs
in parallel). The computation time for a single multichannel 3D
image was about 30–40 s, and a full TMA required about 1 h on
an Intel Xeon CPU with 2.67 GHz running Linux. For the example
shown here a total 2583 multichannel 3D images from prostate
cancer TMAs and 247 such images from several pedGBM sections
were evaluated.
3. Results and discussion

3.1. An integrated workflow for the automated fluorescence
microscopy and analysis of telomere features in primary FFPE tumor
tissue sections

The overall approach for the 3D imaging of FFPE tumor tissues
described here is illustrated in Fig. 1. It consists of three technically
challenging parts. The first part involves the multi-color staining of
the samples with three types of staining that are informative for
the TMM analysis: (i) FISH of telomeres to identify their number
and length distribution. In addition, FISH staining of centromeres
provides a valuable control. It indicates whether the absence of a
telomere FISH signal indeed reflects very short telomeres or simply
the failure to hybridize the probe in a certain part of an image. (ii)
Immunofluorescence (IF) of PML protein, which can be evaluated
in terms of its colocalization with telomeres as a marker for ALT.
(iii) Counterstaining of the DNA with DAPI to identify nuclei.
doi.org/10.1016/j.ymeth.2016.09.014
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The second part of the workflow comprises the image acquisi-
tion: (i) First, the whole tissue sample is imaged in 2D with a
wide-field setup. (ii) Images are analyzed on-the-fly to identify
regions of interest (ROIs), e.g. nuclei showing DAPI and/or telomere
signal. (iii) Information on the corresponding positions is fed back
to the microscope. (iv) High-resolution multicolor confocal fluores-
cence 3D images are acquired for an in-depth automated analysis
of subcellular structures at the regions of interest. (v) An optional
zoom-in step by photoactivated localization microscopy can be
applied for analyzing the structure of selected parts of the image
at a resolution that is higher by an order of magnitude.

The third part of the workflow consists of an automated 3D
image analysis: (i) A 3D artifact detection and segmentation step
removes artifacts like autofluorescent signal from contaminating
cells or debris. (ii) Regions of interest are selected via a 3D segmen-
tation of the cell nuclei. (iii) Subnuclear structures are identified
from 3D spot detection and quantification. (iv) A 3D cell-based
co-occurrence analysis can be performed by analyzing the number
of quantified centromeres and telomeres within each cell nucleus.
(v) Via a 3D colocalization analysis, APBs are identified from co-
occurring telomere and PML signals.

3.2. Combined immunofluorescence and FISH staining for detection of
ALT positive tumors using confocal laser scanning microscopy

The majority of studies that analyses the TMM in FFPE tumor
tissues applies telomere FISH alone to identify ALT activity. How-
ever, a few issues should be considered. Different fixation condi-
tions used for different tumor samples as well as heterogeneous
results within one tissue sample can make some areas on a slide
more accessible for the PNA FISH probe than others. This is partic-
ularly important when comparing several tumor samples with
respect to their telomere lengths. Usually, it is assumed that a sin-
Please cite this article in press as: M. Gunkel et al., Methods (2016), http://dx.
gle sample or all the tissue cores on a given TMA slide have mini-
mal technical variations since they are stained in the same manner.
Thus, the lack of a telomeric signal would indicate the presence of
only very short and thus undetectable telomeres. However, the
absence of a telomere FISH signal could alternatively be due to
the inaccessibility of this particular cell for the FISH probe. To con-
trol for this issue, a second PNA FISH probe can be applied [28]. For
comparison this should also be directed against a repetitive
sequence in the genome, such as centromeric repeats. The detec-
tion of a centromere FISH signal in a given cell indicates that tech-
nically the FISH probe can access this nucleus and a lack of
telomere FISH signal would indeed be due to the presence of very
short telomeres. If no centromere signal is observed, this will argue
that none of the probes could access the nucleus. Accordingly, such
a cell should be omitted from the analysis. Secondly, it is problem-
atic to rely only on the telomere signal to identify a tissue as ALT
positive. It is widely accepted that tumor cells and cell lines that
use the ALT mechanism have a very heterogeneous telomere
length distribution within a cell population and also within a single
cell. However, in most telomere FISH studies on tissues the telom-
ere length distribution is not determined but only the presence of
ultra-bright foci is evaluated. These foci are used as an ALT marker
despite the uncertainty about their biological source and function.
Thus, for a more reliable characterization of a tissue section with
respect to its TMM, the presence of APBs should be assessed. These
nuclear subcompartments are specific for the vast majority of ALT
positive cells [9]. By an automated quantification of telomere colo-
calizations with PML-NBs the number of APBs can be determined
[34,35]. To our knowledge all primary tumor samples that have
been analyzed with respect to these structures show an association
between the presence of APBs and ALT. This refers to APBs as com-
plexes of PML assembled around distinct telomeres [9] but not to
the colocalization of PML with large ultra-bright telomere foci that
doi.org/10.1016/j.ymeth.2016.09.014
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have dimensions of several lm. For the latter, a study on pancre-
atic neuroendocrine tumors reported that 39% of all tumors with
ultra-bright foci indicative of ALT showed a colocalization of these
ultra-bright telomere signals with PML [5]. Furthermore, it should
be noted that telomerase negative bona fide ALT cell lines have
been described that lack APBs [40–42]. Thus, it is conceivable that
certain primary tumor samples have ALT but lack APBs.

To evaluate the presence of APBs we stained FFPE tissue sec-
tions of pedGBM samples with FISH PNA probes against telomeric
and centromeric repeats as well as with IF against the PML protein.
Images were acquired by CLSM and analyzed automatically with
respect to the telomere length distribution and frequency of APBs.
The workflow of the sample preparation is illustrated in Fig. 2A.
Essentially a protocol similar to that given in Ref. [28] was used
as described in Section 2.3. The detailed protocol has to be opti-
mized for each tissue and antibody in terms of accessibility of
telomeric DNA and antigen retrieval as critical parameters for the
FISH and immunofluorescence signal. In particular, the antigen
retrieval step and inclusion of an additional enzymatic treatment
such as with proteinase K should be tested. As indicated in Fig. 2A,
an appropriate combination of dyes allows the simultaneous
detection of centromeres, telomeres, and PML-NBs in single cells.
In Fig. 2B some representative CLSM images are shown. The combi-
nation of centromere and telomere signal is analyzed for quantify-
ing the telomere length distribution in a given sample (Fig. 2B, top
merge image). This combination of readouts is useful to assess the
efficiency of the FISH probes and to evaluate whether the lack of a
telomere signal is indeed due to the presence of very short telom-
eres or attributed to technical issues. Additionally, the telomere
signal can be analyzed in relation to a PML-NB staining (Fig. 2B,
bottom merge image). With this combination of stainings the fre-
quency of APBs can be evaluated. From the number of APBs the
TMM of tumor cells can be inferred as described below in further
detail.

3.3. 3D Targeted Imaging

In order to identify, relocate and image ROIs within individual
cores on a TMA, two routines have been implemented. The first
one consists of a sequential mode where a prescreen of the sample
at low resolution is followed by image analysis based target iden-
tification, revisiting of those targets and subsequent high-
resolution 3D acquisition with additional color channels (Fig. 3A–
C). The second routine uses on-the-fly switching of the optical con-
figuration upon automatic identification of an ROI (Fig. 3D, E). In
the first case, a complete TMA was scanned on an Olympus IX81
ScanR microscope with a magnification of 10x. Images were
recorded in the DAPI color channel with an overlap of 30 lm in x
and y direction to ensure complete coverage and to enable stitch-
ing of adjacent images (Fig. 3C, left). The resulting images were
processed using KNIME (Konstanz Information Miner, www.kn-
ime.org) and the KNIME image processing plugins (KNIP) in order
to extract structures that resemble cells. The complete workflows
as well as a detailed description are provided in supplementary
protocol 1. As candidates for subsequent high-resolution multi-
color 3D imaging, all objects with a minimum intensity and an area
falling in an appropriate interval were considered. Due to the
heterogeneity between individual cores of the TMA in intensity
and shape of the cell nuclei, threshold levels for filtering were
adopted based on the distribution of these features within the sin-
gle cores. The global position for each ROI on the TMA was
retrieved from the stage position of each image (image metadata)
together with the position of the ROI within the respective image.
A unique ID was assigned to each ROI as well as the coordinate of
its associated spot based on the regular arrangement of the TMA,
starting on the top left with (0|0). The corresponding KNIME
Please cite this article in press as: M. Gunkel et al., Methods (2016), http://dx.
workflow is depicted in Fig. 3B (upper part). The sample was then
transferred to a Leica TCS SP5 confocal microscope and a coordi-
nate transfer of the ROIs from the wide-field to the confocal micro-
scope was performed (Fig. 3B, lower part, see also supplementary
protocol 1). At each ROI position, a confocal stack with three colors
(Cy3-Telomere, FAM-Centromere, DAPI-nucleus) and 41 z-planes
(distance 0.25 lm) was acquired (Fig. 3C, most right). Imaging of
the whole TMA took about 30 min for the wide-field prescreen.
For high-resolution 3D confocal imaging, each ROI was acquired
in 2.5 min. On average 80 ROIs per core were imaged, resulting
in 3.3 h imaging time per tissue core or around 70 days for a
TMA with 500 cores.

For the second image acquisition routine, a TMA was scanned in
2D at medium resolution on a confocal Leica SP5 microscope using
the Leica MatrixScreener software (Fig. 3F, left). This software pro-
vides a server-client interface (termed ‘computer aided micro-
scopy’, CAM), by which the scan routine can be influenced and
altered. The scan was embedded into a KNIME workflow loop
(Fig. 3E). Special loop start and loop end nodes for addressing the
CAM-interface have been developed in collaboration with KNIME
and Leica. In each step of the loop, one scan field was imaged
and directly processed within KNIME via the KNIME image pro-
cessing plugins (KNIP). Cells were identified based on the DAPI
staining, and single telomeric spots within these cells were
counted based on the Cy3 signal. Nuclear structures containing five
or more telomeric spots were considered as candidates for high-
resolution 3D imaging. The positions of these candidates were col-
lected and fed back to the microscope via the KNIME-CAM-
interface. Upon receiving these positions, a second high-
resolution 3D routine was started immediately at the microscope
that acquired those candidates. Afterwards the next iteration of
the loop was started and the next scan field was recorded. In 36
cores, 1303 ROIs have been identified with 69 h image acquisition
time. A whole TMAwith around 500 cores would thus be imaged in
about 42 days, assuming the same average of 36 ROIs per core.

The first routine can be applied to any pair of microscopes. A
prerequisite is the ability to read and write position information
along with the images. It can also be performed on the same
microscope system for prescreening and targeted imaging or
even for targeted imaging if a set of images of a specific sample
already exists and specific subregions are selected for higher
resolution image acquisition. Subpopulations within the single
cores can be identified and representatives of these populations
can be acquired with higher resolution in 3D or additional color
channels. Individual cores can be addressed by filtering for their
coordinates in the position list given to the microscope. The
decision, which ROIs to select for high-resolution 3D imaging,
can be based on the complete wide-field dataset of the whole
TMA.

If the phenotype of the structures to be acquired is known
beforehand, the second routine can be used. The microscope then
acts as a trigger system, which can switch the acquisition mode
upon registration of a predefined event (detection of a structure
of interest, rare cell cycle event, etc.), acquires images of the
desired resolution, and afterwards continues the screen.

The time needed for imaging with a single point confocal sys-
tem becomes prohibitive for a larger number of samples. Based
on our preliminary tests this issue can be addressed by applying
3D-TIM on a spinning disk microscope like the PerkinElmer Opera
system. The field of view is fixed on this system to approximately
150 lm � 100 lm with 60� magnification and a whole 3-color 3D
stack can be acquired in 1.5 min. Within each field of viewmultiple
cells within the tissue are imaged at once. If 5–10 of these regions
per core are automatically selected for imaging by TIM, 500 cores
could require 60–120 h or 2.5–5 days imaging time, i.e. a roughly
tenfold speed increase can be obtained.
doi.org/10.1016/j.ymeth.2016.09.014
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Fig. 3. 3D Targeted Imaging (3D-TIM). (A) Schematic workflow for sequential imaging on different scales. First, ROIs are identified in a pre-screen. Then, the sample is
transferred to a second microscope and after a referencing step the previously identified regions can be addressed and acquired in 3D with higher resolution and more color
channels. (B) KNIME implementation of the workflow in A. (C) Example images. On the left, the single tissue spots of a TMA can be seen. Next to it, the two wide-field images
acquired of the first spot are shown. These were processed in order to identify the ROIs as described in the text. On the right side, the same region is shown as imaged by CLSM
after sample transfer and referencing (maximum projection of 41 axial layers). (D) Schematic workflow for integrated imaging on different scales. In each image of a primary
screen, ROIs are identified. These positions are directly fed back to the microscope and a high-resolution z-stack is acquired for each region. Afterwards, the next scan field of
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3.4. Extraction of telomere features from fixed tumor sections via
automated 3D image analysis

To extract telomere features from fixed tumor sections, a robust
3D model-based image analysis approach described in detail in
Section 2.5 was developed (Fig. 4). This approach includes an
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Fig. 4. Automated 3D image analysis of telomere features from tissues. (A) Schematic w
Subnuclear structures are identified using 3D spot detection after 3D segmentation of
intensity of telomeres, centromeres and PML-NBs are quantified using a 3D model-bas
conducted. (B) Example image of the telomere channel from imaging a prostate cancer TM
telomere spot (C) and a telomere spot with high intensity (D) (both highlighted in B). (E)
large artifacts (erythrocytes). (F) Overlay of telomere, PML, and DAPI channels of a
highlighted. (G) 3D visualization of the quantified geometry of the telomeres, PML-NBs,
Images in B, E, and F are maximum intensity projections. Scale bars, 10 lm. (For interpr
web version of this article.)
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artifact detection step to exclude regions of artifacts from further
analysis (e.g. fragments of red blood cells), a cell segmentation
step, and 3Dmodel-based spot quantification. The approach is fully
automated without the need of manual parameter adjustments for
individual images. For the application shown here, three fixed sets
of parameters were used: one for the analysis of tissue spots from
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orkflow for 3D quantitative image analysis of 3D multichannel microscopy images.
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ed approach. Finally, 3D cell-based co-occurrence and colocalization analyses are
A showing telomere spots of heterogeneous sizes. (C, D) 2D intensity plots of a small
Example image of the telomere channel from the TMA image acquisition depicting

pedGBM sample, where six colocalizations of PML-NBs with large telomeres are
and colocalizations for the image in F with marked colocalization classes c1 and c2.
etation of the references to colour in this figure legend, the reader is referred to the
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TMAs of prostate cancer and two for the analysis of pedGBM
tissues. Common parameter settings for all images included the
chosen parametric model for spot quantification (anisotropic 3D
Gaussian intensity model), the initial model parameters, the range
of 3D ROI sizes used for model fitting (radii of 3–10 voxels), and the
3D ROI size for local maxima search (5 � 5 � 5 voxels). In contrast,
the parameter settings for 3D spot detection, spot filters, and 3D
DAPI segmentation were adapted to the intensity distribution
obtained for the staining of a given TMA or tissue sample. For
the spot detection in the TMA images, a 3D Gaussian filter with
isotropic smoothing (r = 1 voxel) was used for noise reduction
followed by intensity clipping using relative factors of c = 2 for
telomeres and c = 4 for centromeres (see [38] for details). In the
images from the pedGBM sections, a 3D Laplacian of Gaussian filter
with anisotropic smoothing (rx,y = 1.5 and rz = 1 voxels) was used
as well as relative factors of c = 14 or c = 16 for telomeres, cen-
tromeres, and PML-NBs. Furthermore, spots were filtered using
the minimum spot contrast with relative factors of s = 2 (prostate
cancer images) and s = 3 or s = 4 (glioblastoma images) with
respect to the standard deviation of the image histogram. In
order to segment the DAPI signals Otsu thresholding was employed
with one threshold (TMA images) as well as Otsu thresholding
with two thresholds or maximum entropy thresholding (pedGBM
images).

As an example, Fig. 4G shows a 3D visualization of the 3D seg-
mentation results of telomeres (red) and PML-NBs (green) of one
multichannel microscopy image of the glioblastoma sample shown
in Fig. 4F. In our approach a 3D geometric description of the telom-
ere and PML-NBs spots is obtained. From this parameterization,
colocalizations between these spots are detected and classified
automatically (Fig. 4G). Two different classes of colocalizations
were defined: In class 1 (c1) the center of one spot lies within
the other spot. The class 2 (c2) colocalization is a less stringent def-
inition that only requires an overlap of the spots. Note that with
standard approaches, colocalizations are usually determined based
on color overlays of the red and green channels (see discussion in
Ref. [38]). Such color overlays strongly depend on the image con-
trast and background signal in the different channels. They were
not applicable for the tissue samples due to the high heterogeneity
of intensity variations and image artifacts. In contrast, by using a
3D geometry-based approach colocalizations could be determined
robustly in the presence of image contrast variations.
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3.5. 3D-TIM of telomeres on a prostate cancer TMA reveals differences
in the telomere length distribution between tissue cores

In order to illustrate the automated image acquisition and anal-
ysis we evaluated 45 prostate cancer tumor sections on TMAs with
respect to their telomere signals detected with a Cy3-labeled FISH
probe. To demonstrate the variety of results that were obtained
from this, we show here the telomere length distributions of four
representative tissue cores from the TMA (Fig. 5). The amount of
hybridized telomere probe is directly proportional to the number
of telomeric repeats and hence the signal intensity is a direct indi-
cation of the telomere length. The distribution of the telomere
intensities from different prostate cancer biopsies revealed the
heterogeneity of the telomere length distribution between tissue
spots. For example, the maxima of the distribution for II and III
were shifted towards longer telomeres as compared to I and IV,
which had the highest frequency at the lowest intensity bin
(Fig. 5). In addition, samples III and IV had higher fractions of very
long telomeres than I and II. This type of quantitative information
cannot be obtained from the commonly performed manual exam-
ination of wide-field images. The comparison of the frequencies of
telomere intensities on a cell-to-cell basis between different tis-
sues requires an automated segmentation of individual DAPI
stained nuclei in FFPE tissues. This step is technically challenging
as nuclei in very close vicinity often cannot be well separated from
each other due to low image contrast and significant background
signal. To overcome this problem, normalization to a measured
DAPI volume has been implemented (Fig. 5B). Currently, one
caveat here are relatively high background DAPI signals in some
of the tissue sections. One example is depicted in histogram IV
where an abnormally high DAPI volume was measured. In order
to address this issue the ratio of the centromere FISH to DAPI signal
can be determined (#centro/1000 lm3 in Fig. 5). A low value of this
parameter is indicative of technical problems in the region evalu-
ated: Either the measured DAPI signal has an unusually high back-
ground or the FISH probe hybridization was not efficient on this
particular tissue spot. It is advantageous to conduct this analysis
with the centromere probe. The number of centromeres per nuclei
should reflect the chromosome content of the cell, whereas the
detection of telomere signals is affected by the telomere mainte-
nance mechanism and cell proliferation. Thus, a low centromere/
DAPI ratio represents an informative quality parameter to identify
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tissue regions that should be excluded from the quantitative anal-
ysis of the telomere length distribution due to an inefficient FISH
reaction. In contrast, regions with normal centromere/DAPI ratio
but a low telomere signal can be assigned to cells with very short
telomeres. In the future, this analysis can be further improved by
reducing the unspecific fluorescent signal that is prominent in
the DAPI channel in some of the spots, for example by using differ-
ent DNA staining reagents and testing agents to reduce autofluo-
rescence, a well-documented issue for FFPE tissues [43]. This will
also help to implement a proper automatic segmentation of the
nuclei and allow for a cell-based analysis of the FISH signals. Fur-
ther improvements will include the use of a gradient-flow tracking
approach for the cell-based nucleus segmentation as well as an
extended artifact detection step that exploits all microscopy
channels.

3.6. Quantitative confocal microscopy analysis of tissue sections can be
used to determine the active TMM

A functional TMM is crucial for unlimited proliferation, a
hallmark of tumor cells. Accordingly, several recent studies con-
cluded that the type of active TMM can be exploited for patient
TelC-Cy3 PML, Alexa647
A

C

I

II

III

merge +

% colocalizations/telomeres

# telomeres

# PML bodies

# colocalizations

369

203

4.9±2.0

18

I

1679

807

4.4±1.8

74

II

18

11.0

19

IItumor sample

# telomeres with int. ≥1x106 
(%) 

14 
(4.0±0.8%)

21
(1.0±0.2%)

23
(13.0±

86

Fig. 6. Identification of the ALT status of pedGBM samples from FFPE tissues. (A) Represe
for telomeres and PML protein. A colocalizing telomere and PML signal in tissue section I
tumors are visualized as histograms of the integrated telomere intensities as determine
images. Note the high number of telomeres with an integrated intensity of �1 � 106 (A.U
show ALT specific features (see also Fig. 4D). (C) Overview of results from automated imag
automatically in the 3D images from the CLSM acquisition as shown in A. Tumor sam
indicating an active ALT mechanism in this tumor. (D) Examples of cells from tumor secti
probe. All images are maximum projections. Scale bars, 10 lm.

Please cite this article in press as: M. Gunkel et al., Methods (2016), http://dx.
stratification and prognosis [3,4,22–25]. In order to determine
the active TMM in primary tumor samples, several characteristic
features of ALT can be addressed by different methods depending
on the material available. One very reliable marker of ALT activity
is the presence of ECTRs that can be visualized by the C-circle assay
[17]. This assay, however, requires DNA of high quality isolated
from frozen tumor tissues. For FFPE tissues, the detection of APBs
by simultaneous PML-IF and FISH hybridization of telomeres is
well suited to determine the ALT status (Fig. 2, Fig. 6). FFPE sections
from three different pedGBM samples (labeled with I, II, and III)
were stained and imaged (Fig. 6A, D). Then an automated 3D image
analysis was applied to quantify their telomere length distribution
(Fig. 6B, C) as well as the colocalization of telomeres and PML-NBs
(Fig. 6C). For this, only specific telomere and PML signals that are
localized within the nucleus are considered. Of the three tested
pedGBM samples, one tumor (sample III) appears to use the ALT
mechanism for telomere maintenance as indicated by a higher fre-
quency of colocalizations between PML protein and telomeres of
11.0 ± 4.4% compared to 4.9 ± 2.0% and 4.4 ± 1.8% (Fig. 6). Thus,
the difference between the putatively ALT positive tumor and the
other two samples is significant. The error was estimated from
independent measurements of tissue slices from an identical
 DAPI
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tumor sample. Notably, this APB positive tumor sample also shows
a distinct telomere length intensity profile (Fig. 6B, D) with a high
portion of more intense telomere signals compared to the APB neg-
ative tumors. Indeed, 13.0 ± 4.0% of the detected telomere signals
exhibited an integrated intensity of �1,000,000 (A.U.) compared
with only 1.0 ± 0.2% or 4.0 ± 0.8% of telomeres with such strong sig-
nals in the other two tested tumor samples. ALT positive cells fre-
quently show an elevated telomere repeat content. Most likely this
is reflected by the high number of strong signals obtained from the
telomere FISH probe in this case (Fig. 6B–D). The detection of these
ultra-bright telomeric foci together with the higher number of
APBs is evidence for ALT activity in tumor III but not in the other
two tumor tissues examined here. Notably, all three samples have
ATRX protein expression as shown by immunohistochemistry
(Fig. S1). Accordingly, we classify sample III into the class of pedi-
atric glioblastoma ALT cases that do not show a loss of nuclear
ATRX despite the otherwise high correlation of ALT and lack of
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this article.)
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ATRX in this entity [44]. By extending our data set in the future
and combining it with additional assays for ALT we will be able
to more precisely define a threshold of APB frequency to classify
a tumor as ALT positive. Furthermore, this type of investigation
can be extended by the cell-based analysis of a concomitantly
applied centromere-specific FISH probe in order to get a more pre-
cise understanding of the telomere length distribution of the dif-
ferent samples as explained above.

3.7. An integrated super-resolution mode reveals more details on
telomeres and PML-NBs in tumor tissue sections

In further analyses, PML-NBs and telomeres in FFPE glioblas-
toma tissue sections were examined using single molecule
localization microscopy (SMLM, Fig. 7 and Section 2.4). In
super-resolution techniques based on photoswitching of single
fluorescent molecules, only a changing small random subset of
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the fluorophores emits light in a given image frame. Thus, the sig-
nals from individual fluorophores can be isolated and fitted by a
model function to determine their location with few nanometers
accuracy. Usually several thousand image frames are acquired, so
that the labeled structures can be reconstructed afterwards based
on the fit coordinates [45–49]. Here, laser illumination intensities
of about 1 kW/cm2 were applied without additional variations of
the embedding conditions in order to induce photoswitching of
the individual fluorophores. With this approach PML-NBs labeled
with Alexa647 by immunofluorescence against the PML protein
could be resolved in primary tissues and additional information
compared to wide-field and CLSM images was inferred (Fig. 7A-
C). First, the sizes of the subnuclear structures can be determined
in a more precise manner. Here, the measured sizes of the
PML-NBs in the super-resolution mode varied from about
100–800 nm. Occasionally, hollow structures with an estimated
thickness of the outer shell of about 100 nm were observed
(Fig. 7C, I, III). This is in good agreement with previously described
characteristics for PML-NBs in U2OS and HeLa cell lines detected
with 4Pi super-resolution microscopy [12]. In accordance with
previous reports on the structure of these nuclear bodies in cell
lines, we could detect an irregular distribution of PML protein on
the outer shell in the primary tumor tissue sections [12]. Besides
the larger structures, several smaller spots of enriched PML signal
were also detected (Fig. 7C, II and IV). They might represent stress-
induced PML microbodies or nuclear microspeckled structures as
have been described before [50], but this needs further confirma-
tion. Notably, the Cy3 dye, which previously has been reported to
undergo photoswitching but produce only low quality reconstruc-
tion images [51], could also be used for the localization approach in
the tissue sections (Fig. 7B, D). Using the super-resolution mode on
the Cy3-labeled telomeres we were able to detect an increased
number of telomere signals (Fig. 7A, B). On the other hand,
telomere and PML signals can appear as colocalizing when images
are acquired in wide-field mode, but upon visualization with
higher resolution separated signals can be revealed. Thus,
super-resolution microscopy is likely to provide more accurate
APB numbers. This underlines the importance of the resolution
that is used to acquire images from tissues and that this should
be noted when comparing frequencies of colocalizations from
different studies. Further, the sizes of telomere signals can be
assessed more precisely using super-resolving methods for short
telomeres (Fig. 7D, F) than with confocal microscopy when the
extension of the telomeric signal is at the border or even below
the resolution limit. In the future this could be exploited for a more
accurate determination of the telomere length distribution. With
simultaneous use of Alexa647-labeled PML protein and the
Cy3-labeled telomere FISH probe, coordinate based analyses of
the single molecule distributions become feasible [52–54]. Thus,
this approach can also be applied to get further insight into the
structure of APBs in ALT positive tumor tissues and to compare
these findings to previous studies on APBs in cell culture models.

4. Concluding remarks

The identification of telomere features in primary tumor tissue
sections is becoming increasingly relevant for patient stratification
in several cancer types. Here, we have introduced an integrated
workflow for automated 3D high-resolution image acquisition
and analysis to dissect telomere features from tissue sections.
Using these methods telomere length distribution patterns in sin-
gle pedGBM tissue sections as well as on a prostate cancer TMA
could be determined. We show that the automated acquisition
and image analysis of FISH stained TMAs can be used to discrimi-
nate telomere length distributions in different patient samples. It is
noted that telomere shortening in both prostate cancer cells and
Please cite this article in press as: M. Gunkel et al., Methods (2016), http://dx.
surrounding stromal cells have been suggested as prognostic
markers in this disease that is associated with tumorigenesis
[32,55–57]. It was found that short or heterogeneous telomere
lengths in tumor cells and short telomeres in cancer-associated
stromal cells are correlated with a poorer prognosis and higher risk
of cancer recurrence. Further, the simultaneous detection of PML
protein and telomeres and the workflow proposed here enables
the quantitative evaluation of APBs. These nuclear subcompart-
ments are a hallmark for ALT positive tumor cells, and thus provide
information about the active TMM. This is of particular interest for
pedGBMs where recent studies indicate that the activation of ALT
is linked to differences in clinical outcome and therapy response
[25]. Thus, the correlation of the 3D-TIM based analysis of telomere
features of tissue sections with clinical data can provide an addi-
tional readout that can be integrated into patient stratification
schemes. To further advance this application additional steps can
be implemented in the future, for example an additional tissue-
specific staining to discern tumor and normal cells. Super-
resolution microscopy techniques are currently hardly exploited
for the analysis of cancer tissue sections and provide new possibil-
ities to investigate cellular substructures with respect to cancer-
specific aberrations. With the fluorescent labeling scheme used
here, a multi-mode and multi-scale imaging approach that combi-
nes wide-field microscopy, CLSM, and SMLMwithin a single instru-
ment can be applied to primary tumor samples. By switching back
and forth between the three different imaging modalities, imaging
speed and resolution can be optimized for acquiring the specific
datasets needed. We anticipate that this approach will also be use-
ful to investigate the structural organization of healthy cells within
their endogenous tissue environment.
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Supplementary Figure S1 

 

 

Fig. S1. ATRX immunohistochemical staining of pedGBM tumors. The same three pedGBM 
tumors analyzed in Fig. 6 were evaluated for the presence of ATRX protein by 
immunohistochemistry. ATRX expression was detected in all three tumor tissues. 100x and 
200x magnifications are shown. 
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Supplementary Protocol 1  

Targeted imaging workflow implementation in KNIME 

1. Image acquisition for ROI coordinate assignment 

To perform a coordinate transfer between two microscope systems and to locate preselected 
ROIs after repositioning a sample it is mandatory to assign a set of matching coordinates on 
both systems. In the case of imaging the TMAs as described in the main text, the whole 
sample was already imaged on the wide-field microscope. To obtain a matching pair of 
coordinates, the sample was placed on the stage of the confocal Leica SP5.  
 

 

Fig. S2. Coordinate assignment scheme for referencing. (A) A complete TMA is imaged by 
wide-field microscopy. (B) Images are also acquired with a confocal microscope at selected 
positions indicated by the green rectangles. (C) Enlarged view of the reference confocal 
image regions that are matched to the wide-field images. 
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The sample was positioned so that the top left core was visible in the field of view of the 
microscope and this position added to the ‘Mark-and-Find’ section within the Leica LAS-AF 
software. This was repeated for 11 cores to the right and for 8 cores down (Fig. S2A). This 
sequence is arbitrary but a sufficient distance between the single reference position results in 
higher accuracy of the referencing process. The position list was saved in a *.maf file and the 
imaging sequence started, which acquired one reference image at each position (Fig. S2C). 
These images were stored in a *.lif container and are matched together with the position 
information from the *.maf-file to the wide-field data set as described for the ‘referencingTMA’ 
workflow below. 

2. Installing and configuring KNIME 

The automated targeted image acquisition is implemented with the KNIME open source data 
analysis platform. KNIME allows it to visually create a data processing pipeline that executes 
the analysis steps and evaluates the results and images. These pipelines are referred to as 
‘KNIME workflows’. In this manner images are acquired from regions that contain the 
biologically relevant information, which largely speeds up the imaging process. KNIME can 
be installed from www.knime.org and additional plugins needed are loaded from the following 
repositories: 

http://update.knime.org/analytics-platform/3.2 

http://update.knime.org/community-contributions/trusted/3.2 

http://update.knime.org/community-contributions/3.2 

The targeted imaging KNIME workflows described here can be downloaded as 
supplementary files termed "identifyCells.zip" and “referencingTMA.zip”. Additionally, the 
plugins listed in Table S1 need to be included since they provide nodes integrated in the 
workflow. These plugins are added via ‘Help’ -> ‘Install New Software …’.  The workflows 
themselves are imported by selecting ‘File’ -> ‘Import KNIME Workflow …’. In the following 
description of the KNIME workflows, node names are written in italics, followed by their short 
description as stated within the workflows under the nodes in normal type. Metanodes 
collecting multiple nodes in one single node are marked as such. 
 

Name Version 
KNIME Analytics Platform 3.2.0.v201607131338 
KNIME Distance Matrix 3.2.0.v201606131354 
KNIME External Tool Support 3.2.0.v201605301230 
KNIME File Handling Nodes 3.2.0.v201607061823 
KNIME HCS Tools 3.1.101.v201604271109 
KNIME Image Processing 1.5.1.201607261306 
KNIME Image Processing - ImageJ Integration (Beta) 0.10.1.v201607070911 
KNIME JFreeChart 3.2.0.v201605301230 
KNIME Public Server Access 3.2.0.v201604201149 
KNIME Quick Forms 3.2.0.v201607131237 
KNIME Quick Forms (legacy) 3.2.0.v201606131354 
KNIME R Statistics Integration (Windows Binaries) 3.0.3.v201607011540 
KNIME Virtual Nodes 3.2.0.v201606131354 

Table S1 KNIME analytics platform and plugins used within the workflows presented here. 
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3. KNIME Workflow ‘identifyCells’ 

The ‘identifyCells’ workflow is depicted in Fig. S3. It retrieves the locations of the images 
from the prescreen, specifies them (List Files: list image locations) and matches them with 
the corresponding metadata (File Reader: read metadata) in order to get the x, y and z 
position of the microscope (Metanode calcPositions). Images are sorted based on their name 
and processed (Metanode ImageProcessing) in a parallel loop structure (Parallel Chunk Start 
and Parrallel Chunk End). First, the images are retrieved from the specified positions (Image 
Reader (Table)). Background is subtracted (ImageJ Macro: subtract background), and then 
the images are thresholded globally and locally (Global Thresholding, Local Thresholding). 
The resulting binary images are merged (Binary Image Operations) and the result is 
analyzed for connected components (Connected Component Analysis). These components 
are then filtered for size (Labeling Filter) and subdivided (Waehlby Cell Clump Splitter [1]). 
For each remaining connected component the following features were extracted (Image 
Segment Features): Mean intensity and its standard deviation, x and y centroid position, 
number of pixels, circularity, perimeter, convexity, extend, and diameter. The result is a table 
with one entry for each object listing its features. The name of the original image each object 
was found in is retrieved (Labeling Properties). Post processing (Metanode: PostProcessing) 
is performed in order to keep only objects above a minimum mean intensity. Additionally, the 
data set is thinned out by a distance filter so that remaining objects have a distance of 25 µm 
or greater to each other, which resembles one field of view for later targeted imaging. Thus, 
duplicates of an imaged object are avoided. The table containing the objects and their 
corresponding information is stored as a KNIME table. 

 

	

Fig. S3. KNIME workflow ‘identifyCells‘ 

 

4. KNIME Workflow ‘referencingTMA’ 

The ‘referencingTMA’ workflow consists of 4 steps that are described in further detail below. 
These comprise (i) obtaining the target list and enriching it with metadata, (ii) retrieving 
microscope specific data and metadata for the Olympus ScanR and Leica SP5 microscopes, 
(iii) calculating the coordinate transfer function between the two sets of reference points for 
each microscope and applying it on the target list, and (iv) generating the target list in a 
format readable by the microscope (Fig. S4). Position information is stored in µm.  
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Fig. S4. KNIME workflow ‘referencingTMA‘ 

4.1 Generating the target list and adding metadata 

The target list as generated by the workflow ‘identifyCells’ is loaded. Each object of the target 
list is classified as belonging to one spot on the tissue microarray (Metanode assign Slice; 
double click to configure). Here, the following parameters have to be specified (in µm): center 
positions x0 and y0 of the first spot on the TMA (Olympus ScanR coordinates), the row and 
column distances d-row and d-col (on the TMA) as well as the Offset dx-row and dy-row 
(relative Olympus ScanR coordinates) in case there is an angle between the orientation of 
the TMA matrix and the microscope coordinate system. In order to find suitable reference 
candidates within the target list and to account for the heterogeneity observed between the 
spots, the distribution of the features determined by the workflow ‘identifyCells’ is calculated 
individually for each spot and filters are adapted to these levels (Metanode 
calculatePositions). For each objet, the according microscope specific metadata is assigned 
(Joiner) and the table is cleaned (Column Filter, Column Rename, RowID). 

4.2 Retrieving microscope specific data and metadata  

The microscope systems used here were an Olympus ScanR and Leica SP5. For the 
Olympus ScanR, the locations of the acquired images (List Files: getImageLocations: 
Olympus ScanR) as well as the microscope specific metadata (File Reader: 
getImagePositions: Olympus ScanR (acquisitionlog.dat)) are read in, parsed (Metanodes 



 

 

7 

getPositionsIX81-AqLog.dat and FilenamePasrser:ScanR) and joined in a single table 
(Joiner). For referencing, images are compared between the two microscope systems. It is 
possible to search the acquired reference images of system 2 in the complete data set of 
system 1. Here it is beneficial that we know beforehand in which core sections on the TMA 
reference images were acquired. The names of all the corresponding images in the data set 
of system 1 are provided within a KNIME table (Table Reader: getReferenceCandidates: 
Olympus ScanR), which saves time for the later correlation-based referencing. The joined 
table is those filtered for these images only (Reference Row Filter). 

For the Leica SP5, the Leica *.lif container with the reference image is loaded (Image 
Reader: getImages: LeicaSP5). These images are scaled to the same pixelsize as the wide-
field data, rotated to the same orientation and background is subtracted (Metanode 
Reference-Image-Preparation). The position information from these images acquired with a 
Mark-and-Find routine in the Leica software is read (XML Reader: getImagePositions: Leica 
SP5 (*.maf)) and cleaned (Metanodes getPos-SP5-MarkAndFind and calcReferenceXYZ). 

4.3 Calculating the coordinate transfer function between the two sets of reference points for 
each microscope and applying it on the target list 

In order to relocate positions identified on a sample, a coordinate transformation between the 
two microscope systems (or on one microscope system after replacing the sample) needs to 
be performed. The point sets for calculating this transformation are obtained by mapping 
reference images acquired at system 2 to images within the data set acquired at system 1 by 
normalized cross correlation [2] (Metanode calculateReferencePositions; right click to 
configure and set pixel size). Afterwards, the tables are cleaned and sorted (Metanodes 
cleanTable and sortReferencePoints). In combination with the stage information, this yields 
the point sets in 3D space 𝒑𝟏, 𝒑𝟐 and 𝒑𝟑 for system 1 and 𝒑′𝟏, 𝒑′𝟐 and 𝒑′𝟑 for system 2, each 
containing a set of 3 coordinates 𝐩 = 𝑥, 𝑦, 𝑧 !. Based on these points, the connection 
vectors 𝐚 =  𝒑𝟐 −  𝒑𝟏,  𝐛 =  𝒑𝟑 −  𝒑𝟐, 𝐚′ =  𝒑′𝟐 −  𝒑′𝟏 and 𝐛′ =  𝒑𝟑 −  𝒑𝟐 are calculated. The 
tables containing these points are rearranged in order to use each coordinate as a KNIME 
flow variable (Metanodes arrangeReferencePoints) and joined together (Joiner) in one table. 
From both point sets, 𝒑𝟏 and 𝒑′𝟏 are also extracted as flow variables as origin points for 
coordinate translation. The rotation matrix is calculated the following way (Java Snippet: 
rotate points): 𝐚 and 𝐚′ are normalized to 𝒏𝟏 and 𝐧′𝟏. 𝒏𝟐 and 𝐧′𝟐 are calculated by 
normalizing 𝒏𝟐 = 𝒏𝟏×(𝒏𝟏×𝒃) respectively 𝒏′𝟐 = 𝒏′𝟏×(𝒏′𝟏×𝒃′). Together with the origin 
𝐨 = (𝟎,𝟎,𝟎)𝑻 they describe the two normalized sets of points 𝐏𝟏 and 𝐏𝟐 in the planes, which 

should be rotated on one another. Their centroids are calculated 𝒄𝟏 =
𝟏
𝟑

𝑷𝟏𝒊𝟑
𝒊!𝟏  and 

𝒄𝟐 =
𝟏
𝟑

𝑷𝟐𝒊𝟑
𝒊!𝟏  and used to calculate the covariance matrix 𝑯: 

𝑯 = (𝑷𝟏𝒊 −  𝒄𝟏)
𝟑

𝒊!𝟏

(𝑷𝟐𝒊 −  𝒄𝟐)𝑻 

which is then decomposed to its singular values  

𝑼, 𝚺,𝑽 = 𝑺𝑽𝑫 𝑯 . 
The rotation matrix 𝑹 is calculated by 

𝑹 = 𝑽𝑼𝑻. 
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The coordinates 𝐱 = 𝑥, 𝑦, 𝑧 ! of the identified ROIs on the TMA are then transformed to 
system 2 by (Java Snippet: translate points, Java Snippet: rotate points, Java Snippet: 
translate points) 

𝐱! = 𝑹 𝒙 − 𝒑𝟏 + 𝒑!𝟏. 

 

4.4 Generating the target list in a format readable by the microscope 

For each core, a maximum of 100 ROI coordinates are selected randomly (Group Loop Start, 
Row Sampling, Group Loop End) from the transformed table. The coordinate table is brought 
to xml format (Metanode setPos SP5) and written to disk (XML Writer), where it can be read 
from the Mark-and-Find section in the Leica software controlling the confocal SP5 
microscope. 
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Supplementary Protocol 2  

3D model-based image analysis quantification of subcellular structures 

1. 3D Gaussian model function 

Subcellular structures like telomere, PML bodies and centromeres have dimensions that are 
close to or below the resolution of the fluorescence microscope. The apparent shape of such 
small spot-like structures is determined by the point-spread function (PSF) of the 
microscope. The PSF for 3D microscopy images can typically be well modeled by an 
anisotropic 3D Gaussian function [3]. Accordingly, this function is also well suited to 
represent the 3D intensity profile of such small spot-like structures. Using the anisotropic 3D 
Gaussian function  

𝑔!"#$$%"&!! 𝐱,𝜎!𝜎!𝜎! = exp −
𝑥!

2𝜎!!
−
𝑦!

2𝜎!!
−

𝑧!

2𝜎!!
 

where 𝐱 = 𝑥, 𝑦, 𝑧 ! is a 3D position and 𝜎!, 𝜎!, and 𝜎! are the standard deviations, the 3D 
Gaussian parametric intensity model is defined as 

𝑔!,!"#$$%"&!! 𝐱,𝐩 = 𝑎! + 𝑎! − 𝑎!  𝑔!"#$$%"&!! ℛ 𝐱,𝛂, 𝐱! ,𝜎!𝜎!𝜎! . 

Here, ℛ 𝐱,𝛂, 𝐱!  denotes a 3D rigid transform (e.g., [4, 5]) that comprises 3D translation 
parameters 𝐱! = 𝑥!, 𝑦!, 𝑧! !  and 3D orientation parameters 𝛂 = 𝛼,𝛽, 𝛾 ! to represent spots 
with arbitrary positions and orientations, respectively. For details on the design of parametric 
intensity models in general see ref [5]. The parameters 𝑎! and 𝑎! denote the local 
background and peak intensity levels of the spots, respectively. The 3D ellipsoidal spot 
shape is given by the standard deviations 𝜎!, 𝜎!, and 𝜎! of the model. In total, the model 

comprises 11 parameters 𝐩 = 𝑎!, 𝑎!,𝜎! ,𝜎! ,𝜎! ,𝛼,𝛽, 𝛾, 𝑥!, 𝑦!, 𝑧!
!
. The 3D Gaussian model 

has previously been used for quantification of 3D spot-like subcellular structures in 
microscopy images, for example in [3, 6-10]. 

2. Determination of 3D subcellular structure parameters by least-squares model fitting  

The spot detection step is conducted as described in the main text under section 2.5. For 
each spot identified in this manner the 3D Gaussian model 𝑔!,!"#$$%"&!! is directly fitted to 
the 3D image intensities 𝑔 𝐱  within a spherical 3D region-of-interest (ROI). This is 
accomplished by minimizing the objective function 

𝜒! 𝐩 = 𝑔!,!"#$$%"&!! 𝐱,𝐩 − 𝑔 𝐱
!

𝐱∈!"#

. 

For minimization, the iterative method of Levenberg and Marquardt (e.g., [11, 12]) was 
applied that incorporates first order partial derivatives of the 3D Gaussian model with respect 
to the model parameters 𝐩. Note that partial derivatives of the image are not required. The 
partial model derivatives can be stated in analytic form: 
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!!!
!!!

= 1 − 𝑔!"#$$%"&!! ℛ 𝐱,𝛂, 𝐱! ,𝜎!𝜎!𝜎!
!!!
!!!

= 𝑔!"#$$%"&!! ℛ 𝐱,𝛂, 𝐱! ,𝜎!𝜎!𝜎!
!!!
!!!

= 𝑎! − 𝑎!
!!!

!!!
 𝑔!"#$$%"&!! ℛ 𝐱,𝛂, 𝐱! ,𝜎!𝜎!𝜎!

analogous for 𝜎! and 𝜎!
!!!
!"

= 𝑎! − 𝑎!  𝑔!"#$$%"&!! ℛ 𝐱,𝛂, 𝐱! ,𝜎!𝜎!𝜎!

∙ !!
!!!
, !!
!!!
, !!
!!!

 ℛ 𝐱,𝛂,𝐱!
!"

analogous for 𝛽, 𝛾, 𝑥!, 𝑦!, and  𝑧!

 

 

where ℎ!, ℎ!, ℎ! ! 𝐱,𝛂, 𝐱! = ℛ 𝐱,𝛂, 𝐱! . The partial derivatives of the 3D rigid transform 
ℛ 𝐱,𝛂, 𝐱!  with respect to the model parameters 𝛼,𝛽, 𝛾, 𝑥!, 𝑦!, and  𝑧! have been reported 
previously [5]. In the procedure used here all model parameters are optimized 
simultaneously, except for 𝛼 and 𝛽 that are kept fixed (𝛼 = 𝛽 = 0) during optimization. The 
reason is that the 3D microscopy image data has a coarser voxel size in z-direction (250 nm) 
compared to the xy-plane (96 nm) and out-of-plane rotations have to be avoided by only 
enabling rotation within the xy-plane using the parameter 𝛾. During iterative model fitting the 
minimizer might yield an invalid value for a certain parameter, e.g., a negative value for an 
intensity level. Such cases are automatically detected and the respective parameter is either 
blocked for a few iterations or its value is slightly modified (see refs [5, 13] for details). As 
termination criterion for the iterative minimization the relative difference between two 
successive values of the objective function 𝜒! is used, i.e., 

𝜒! 𝐩!!! − 𝜒! 𝐩!
𝜒! 𝐩!!!

< 𝑇!! , 

with a threshold value of 𝑇!! = 10!!. The fitting results in estimates of all model parameters 
with usually subvoxel resolution. In previous studies based on nonlinear estimation theory 
and Cramér-Rao bounds, we have shown that for different types of 2D and 3D parametric 
intensity models including Gaussian models the theoretically best achievable accuracy can 
be reached by model fitting. Furthermore, it was demonstrated that the accuracy of the 
obtained 3D position and size parameters is typically in the subvoxel range [5, 14, 15]. 

The start parameters for model fitting are automatically determined for each detected spot 
candidate as follows: The 3D translation parameters 𝑥!, 𝑦!, 𝑧!  are initialized with the 3D 
position of the detected spot, and the 3D orientation parameters with zero, i.e., 𝛼 = 𝛽 = 𝛾 =
0. The peak intensity level 𝑎! is initialized with the intensity value at the detected position, 
and the background intensity level 𝑎! is initialized with the minimal intensity value within the 
3D ROI used for model fitting. For the standard deviations initial values of 𝜎! = 1, 𝜎! = 1.5, 
and 𝜎! = 2 are chosen. The initial values are different to avoid singular matrices during 
iterative optimization [5]. 

3. Quantification of integrated image intensity of a given spot 

Beside the quantification of individual model parameters, we also quantify the integrated 
intensity of each spot. In previous work the intensity of the 3D Gaussian intensity profile was 
integrated over the entire function domain, i.e., also the part of the function outside the spot 
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volume was considered (e.g., [7]). However, this represents only an approximation of the 
integrated intensity. Here, an analytic closed-form solution of the integration of the intensity 
over the volume of a spot was derived providing an exact solution. Let the spot volume 𝑉 be 
given by an ellipsoid defined by the three standard deviations 𝜎! ,𝜎! ,𝜎! and scaled by a 
certain factor 𝑓 in all dimensions. Then, the integrated intensity 𝐼 of the spot is given by a 
multiplication of the spot contrast 𝑎 = 𝑎! − 𝑎!  with the triple integral of the 3D Gaussian 
over the volume 𝑉 (omitting translation and rotation w.l.o.g):   

𝐼 = 𝑎 𝑔!"#$$%"&!! 𝐱,𝜎!𝜎!𝜎! 𝑑𝑉
!

= 𝑎 𝑑𝑧 𝑑𝑦 𝑑𝑥 exp −
𝑥!

2𝜎!!
−
𝑦!

2𝜎!!
−

𝑧!

2𝜎!!

! !! !! ! !!! !! ! !!! !

!! !! !! ! !!! !! ! !!! 
!

! !! !! ! !!! !

!! !! !! ! !!! !

! !!

!! !!

Substitutions 𝑥! =
𝑥
𝜎!

   ⟶    𝑑𝑥 = 𝜎!  𝑑𝑥! analogous for 𝑦 and 𝑧 :

= 𝑎 𝑑𝑧′𝜎!  𝑑𝑦′𝜎!  𝑑𝑥′𝜎!  exp − 𝑥′! + 𝑦′! + 𝑧′! 2

! !!!!!!!!!!

! !!!!!!!!!!

! !!!!!!

! !!!!!!

!! 

!! 

Rewriting in spherical coordinates 𝜑, 𝜃, 𝑟:

= 𝑎𝜎!𝜎!𝜎! 𝑑𝜑 𝑑𝜃 sin 𝜃 𝑑𝑟 𝑟! exp − 𝑟! 2

!

!

!

!

!!

!

= 𝑎𝜎!𝜎!𝜎! 𝑑𝜑 𝑑𝜃 sin 𝜃  2𝜋  
1
2

 erf
𝑓
2
−

𝑓
2𝜋

exp
−𝑓!

2

!

!

!!

!

= 𝑎𝜎!𝜎!𝜎! 2𝜋  
1
2

 erf
𝑓
2
−

𝑓
2𝜋

exp
−𝑓!

2
2 𝑑𝜑

!!

!

= 𝑎 𝜎!𝜎!𝜎!4𝜋 2𝜋  
1
2  erf

𝑓
2
−

𝑓
2𝜋

exp
−𝑓!

2

  

where erf denotes the error function (e.g., [16]). Setting 𝑓 = 1 and using the volume 
𝑣𝑜𝑙 = 𝜎!𝜎!𝜎!4𝜋/3 of the ellipsoid, this can be rewritten as: 

𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 =
3 𝑎 𝑣𝑜𝑙 2 𝑒 𝜋  erf 1 2 − 2

2 𝑒
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