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SUMMARY

Transport of precursor proteins across chloroplast
membranes involves the GTPases Toc33/34 and
Toc159 at the outer chloroplast envelope. The small
GTPase Toc33/34 can homodimerize, butthe regula-
tion of this interaction has remained elusive. We
show that dimerization is independent of nucleotide
loading state, based on crystal structures of dimeric
Pisum sativum Toc34 and monomeric Arabidopsis
thaliana Toc33. An arginine residue is—in the di-
mer—positioned to resemble a GAP arginine finger.
However, GTPase activation by dimerizationis sparse
and active site features do not explain catalysis, sug-
gesting that the homodimer requires an additional
factor as coGAP. Access to the catalytic center and
anunusual switchlI movementinthe dimeric structure
support this finding. Potential binding sites for inter-
actions within the Toc translocon or with precursor
proteins can be derived from the structures.

INTRODUCTION

The majority of chloroplast proteins are nuclear encoded and
cytosolically synthesized. Over 2000 proteins have to be im-
ported into the organelle (Kleffmann et al., 2006; Leister, 2003).
The major import pathway uses a multicomponent translocon,
the so-called Toc/Tic complex (translocon at the outer/inner en-
velope of chloroplasts) (Kesslerand Schnell, 2006; Li et al., 2007;
Oreb et al., 2006). The Toc translocon contains the two mem-
brane-bound GTPases Toc33/34 and Toc159 (Schleiff et al.,
2003), which expose their G domains to the cytosol and recog-
nize and then deliver precursor proteins through the transloca-
tion pore Toc75. The Toc75 pores oligomerize, and a stoi-
chiometry of (4-53 Toc33/34):(43 Toc75):(13 Toc159) was
determined fromisolated Toc core complexes by immunochem-
ical methods (Schleiff et al., 2003). Slightly different stoichiome-
tries were found when analyzing chloroplasts (3:3:1; Kikuchi
et al., 2006) or outer envelopes (2:5:1; Vojta et al., 2004).

Although these discrepancies are within experimental error, they
might also suggest a dynamic composition of the Toc complex.
Surprisingly, the requirement for such a stoichiometry is not ac-
counted for in current models of protein translocation (Kessler
and Schnell, 2006).

Toc33/34 functionis essential because the deletion of both pa-
ralogs in the Arabidopsis genome—atTOC33 and atT0C34—is
embryo lethal (Constan et al., 2004). Like other GTPases,
Toc33/34 possesses five G elements involved in nucleotide bin-
ding which are linked to and overlap with the switch land switch Il
regions (Bourne et al.,, 1991). Generally, the switches change
conformation during the GTPase cycle, and are thus required
for functional readout of the particular GTPase (Sprang, 1997;
Vetter and Wittinghofer, 2001). Toc33/34 belongs to the class
of TRAFAC (translation factor-related) GTPases and together
with Aig GTPases forms the Aig1/Toc34/Toc159-like paraseptin
GTPase subfamily (Leipe et al., 2002). The function of Aig
GTPases has been linked to self-defense in plants (Reuber and
Ausubel, 1996) and to the development of T cells in vertebrates
(Nitta and Takahama, 2007). Despite identification of these im-
portant functions, biochemical and structural characterizations
of Aig GTPases are sparse. Because of the close relation to
Toc GTPases, the analysis presented here has implications for
this medically relevant GTPase subfamily.

The G domains of Toc33/34 (Kouranov and Schnell, 1997) and
Toc159 (Becker et al., 2004; Chen et al., 2000; lvanova et al.,
2004) directly interact with the transit peptide of the precursor
protein. For Toc33/34, it has been shown that binding is some-
what stronger when the GTPase is in the GTP-bound state
(Gutensohn et al., 2000; Jelic et al., 2003; Schleiff et al., 2002),
and precursor protein interaction accelerates GTP hydrolysis
moderately (Jelic et al., 2002, 2003; Reddick et al., 2007). Models
describing the import of proteins into the chloroplast are based
on dimerization events that take place at the translocation pore
(Kessler and Schnell, 2004; Li et al., 2007). There is evidence
for an interaction between the Toc33/34 and Toc159 GTPases,
such as that determined by Toc33/34 affinity chromatography
using radioactively labeled (Bauer et al., 2002; Becker et al.,
2004; Hiltbrunner et al., 2001; Smith et al., 2002; Wallas et al.,
2003) or chemically purified Toc159 as substrate (Becker
et al., 2004; Hiltbrunner et al., 2001; Smith et al., 2002; Wallas
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Table 1. Crystallographic Analysis

psToc34gmprnp
(PDB Code: 3BB1)

atTOC33GDp
(PDB Code: 3BB3)

atToc33gmppnp
(PDB Code: 3BB4)

Data Collection Statistics

Space group P2:242 P4,242 P4,2,2
Unit cell a, b, ¢ (A) 178.8, 180.1, 90.9 121.6,121.6, 42.7 121.6, 121.6, 42.7
Number of molecules in asymmetric unit 8 1 1
Mosaicity () 0.28 0.27 0.26
Solvent content (%) 54 46 48
Average B (A2) 65.4 82 69.8
Unique reflections 72,688 7,234 7,827
Resolution (A)/HR shell (A) 50 2.80/2.85 2.80 30 2.94/3.04 2.94 25.0 2.84/2.94 2.84
Rsym (%)/HR shell (%)? 7.7/471 8.1/46.6 8.5/48.6
Completeness (%)/HR shell (%) 99.5/95.9 99.3/97.9 99.6/100.0
<I>/<slI>/HR shell 15.5/2.4 14.4/1.9 15.4/2.2
Redundancy/HR shell 3.8/3.4 6.1/4.2 5.8/6.0
Refinement Statistics
Amino acids (chain A) 2-196, 202-258 7-67, 71-251 7-67, 72-250
Total protein atoms (including double 15,842 1,923 1,946
conformations)
Water 298 24 25
Ligand atoms GMPPNP, Mg?*, PEG, glycerol GDP, Mg2* GMPPNP, Mg2*
Rmsd bonds (A) 0.018 0.020 0.020
Rmsd angles () 2.2 2.1 2.1
Riree (%)° 28.6 26.2 27.7
Ruwork (%)° 22.6 21.8 21.8
Ramachandran plot®
Most favored (residues/%) 1,456/85.5 190/88.8 186/87.7
Additional favored (residues/%) 224/13.2 22/10.3 23/10.8
Generously allowed (residues/%) 22/1.3 2/0.9 2/0.9
Disallowed (residues/%) 1/0.1 0/0 1/0.5

#Rsym = SnSijl(h)  1(h)ii/SxSil(h);, where I(h) is the mean intensity.
®Five percent of the data were excluded to calculate Rye.

®Ruwork = SniiFobs(Ni  JFcaic()ii/ShjFops(h)i, where Fops(h) and Feqc(h) are observed and calculated structure factors, respectively.

dLaskowski et al. (1993).

etal., 2003). Furthermore, Toc33/34 has been shown to homodi-
merize (Jelic et al., 2003; Reddick et al., 2007; Weibel et al., 2003;
Yeh et al., 2007). The dimer interface is known from a crystallo-
graphic 3D structure of Pisum sativum Toc34 in the GDP-bound
state (Sun et al., 2002), but it is unclear whether a Toc34 homo-
dimerisrequired forregulation of the Toc complex. Also, the syn-
chronization of the GTPase cycle with homodimerization is con-
troversial (Weibel et al., 2003; Yeh et al., 2007). This prompted
us to determine the 3D structures of the GMPPNP- and GDP-
bound states of Toc33/34 GTPases from Pisum sativum and
Arabidopsis thaliana. We derive switch movements during GTP
hydrolysis, priming the understanding of GTPase regulation. A
hypothesis of possible binding events is given here.

RESULTS
The psToc34 Dimer Is Not Self-Activating

The cytosolic G domain of psToc34 (lacking the C-terminal
membrane anchor) was purified mainly in the GDP-bound form

after recombinant protein production in Escherichia coli. (Re-
garding nomenclature, we have studied the homologous
GTPases atToc33 from Arabidopsis thaliana and psToc34 from
Pisum sativum. The first two italicized letters indicate source
organism, followed by GTPase name. Amino acid names are re-
ferred to simply by organism, i.e., psGlu73 for Glu73in psToc34.
Toc33/34 without a denominator refers to both atToc33 and
psToc34 GTPases.) A nucleotide exchange protocol was estab-
lished to load the GTPase with GMPPNP, a nonhydrolyzable
GTP nucleotide analog. Nucleotide loading states were con-
trolled by HPLC analysis (see Figure S1 in the Supplemental
Data available with this article online). psToc34gmppnp Crystal-
lized in an orthorhombic space group (Table 1), whereas previ-
ously psToc34gpp crystallized under different conditions in
a monoclinic space group (Protein Data Bank [PDB] code:
1H65; Sun et al.,, 2002). The quaternary arrangement of both
psToc34gmppnp and psToc34gpp is a homodimer, without major
structural rearrangements (root-mean-square deviation [rmsd]
of 0.7 A for 245 C, positions).
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Inthe 3D structure of psToc34gmppnp (Figure 1A), the nucleo-
tide moieties are located at the dimer interface. Dimerization
involves a number of loop regions, some of which are Toc-spe-
cific sequence insertions. Among others, the loops carrying G
elements G2 and G3 as well as a loop connecting b5 with a5
are in this interface (Figure 1B); also involved in dimerization is
the loop connecting b4 with a3 that is part of a larger conserved
sequence feature named the conserved box (CB in Figure 1A;
Krucken et al., 2004, 2005; Nitta and Takahama, 2007). In
Toc33/34,the CB forms a number of central secondary structure
elements (inred, Figure 1A), namely b strands b3, and b4 and part
of helix a3. From the alignment of five Toc GTPases, along with
two additional Aig GTPases, a highly conserved arginine can be
seen, with aregister shiftinthe Toc159 proteins. This residue, ar-
ginine 133 in psToc34, is necessary for dimer formation (Reddick
etal., 2007), and it can thus be predicted that dimerizationis are-
current motifin the Aig GTPase family. Arg133 contacts b-and g-
phosphates of GMPPNP in the interacting monomer (Figures 1A
and 1B), similar to the contacts of Arg133 to the b-phosphate
previously observed for psToc34gpp (Sun et al., 2002). The posi-
tioning of Arg133 is reminiscent of an arginine finger described
before for GTPase-GAP complexes (Scheffzek et al., 1998).

Comparison between psToc34 in GMPPNP- and GDP-bound
statesrevealed preservation of the dimeric state, suggesting that
nucleotide load has little if any effect on dimerization. For a GAP
function, we anticipated a higher affinity in the GTP-bound form,
concomitant with a drastic increase in GTP hydrolysis by the
dimeric GTPase (Scheffzek and Ahmadian, 2005). We therefore
determined the influence of the nucleotide loading state on
GTPase dimerization in solution, using analytical ultracentrifu-
gation. Freshly prepared psToc34 (mainly loaded with GDP;
Figure S1) was subjected to sedimentation velocity runs at a
concentration of 50 mM monomer protein. Two species with
sedimentation coefficients of 2.6S and 3.5S were separated.
These correspond to the monomeric and dimeric forms of the
GTPase, as determined from the c(M) distribution. The experi-
mentally determined values are in very good agreement with
the sedimentation coefficients of 2.7S and 4.0S forthe monomer
and dimer calculated from the PDB coordinates with the pro-
gram HYDRO (Garciadela Torre etal., 1994). From a quantitative
analysis of the sedimentation velocity profiles, the dissociation
constant (Kp) of 50 + 20 mM was calculated for the psToc34gpp
dimer (Figure 1C), in agreement with previous data (Reddick
et al., 2007). However, protein aging was demonstrated to com-
promise dimerization properties in the homologous GTPase
atToc33 (Yeh et al., 2007). Here we assessed the aging effect
for psToc34 to investigate whether dimerization was hampered
by the time-intensive nucleotide exchange. We performed an ex-
periment similarto GMPPNP exchange, albeit with excess GDP,
and found the dissociation constant to be raised 5-fold (Kp =
0.25 £ 0.05 mM), as compared to freshly prepared psToc34gpp.
After nucleotide exchange with GMPPNP, the dissociation con-
stant was 0.6 + 0.1 mM. With this caveat, the experiments still
demonstrate that psToc34 is able to dimerize in both nucleotide
loading states, with slight preference for dimerizationin the GDP-
bound form. To determine the effect of oligomerization on hydro-
lysis rates, we performed single-turnover GTP hydrolysis exper-
iments (Prakash et al., 2000) in the concentration range of 0.013
to 4.5 mM protein, that is, across the stoichiometric point for

dimer formation. The increase in enzymatic activity by dimeriza-
tion is about 1.5-fold (Figure 1D). Thus, our analysis of the
isolated psToc34 G domain demonstrates that the dimer is not
self-activating, possibly lacking an additional regulatory layer.

A Disordered Switch I'in Monomeric atToc33

To examine whether such dimerization behavior is a general
feature of Toc33/34 GTPases, we extended the analysis to
Arabidopsis Toc33. When we analyzed freshly prepared atToc33
by gel filtration, monomeric and dimeric species are observed,
in agreement with previous data (Weibel et al., 2003; Yeh et al.,
2007). However, analytical ultracentrifugation with atToc33 un-
der similar conditions as employed for psToc34 revealed exclu-
sively monomeric protein populations (data not shown). Thus,
the G domain of atToc33 must exhibit a lower association con-
stant for dimerization than the G domain of psToc34. Applying
higher protein concentrations than used for psToc34 in ultracen-
trifugation with absorbance detection is impractical. Thus, to in-
vestigate dimerization and to compare the influence of nucleo-
tide load with atToc33 and psToc34 G domains, a filter binding
assay was established (Figure 2A). His-tagged Toc proteins of
defined concentration and nucleotide loading state (either GDP
or GMPPNP preloaded) were immobilized on a nitrocellulose
membrane. After saturation with milk powder, the membranes
were incubated with GST-tagged Toc proteins, again of defined
concentration and nucleotide loading state (either GDP or
GMPPNP preloaded). The bound protein fraction was quantified
by GST-specific antibodies, and thus the interaction of the pro-
teins was quantified. With GST protein (i.e., no Toc fusion) as
negative control, no signals are detectable underthe experimen-
tal conditions used (data not shown). Although this technique
has some limitations, such as mutual steric hindrance or incor-
rect orientations of immobilized proteins, it is still suitable for
a comparative analysis of the nucleotide dependence of
dimerization because the mentioned effects are statistically
equally distributed. We find that both atToc33 and psToc34
dimerize, and further show a similar nucleotide dependence
with a preference for dimerization ofthe GDP species (Figure 2B).
Filter binding data for psToc34 agree with the analytical ultracen-
trifugation data (Figure 1C). Thus, the small influence of nucleo-
tides onthe dimerization as seen foratToc33 and psToc34 might
also occurin other Toc33/34 GTPases.

We went on to characterize atToc33gpp and atToc33gmppnp
structurally (Figure 2C; Table 1). Both proteins are monomeric
in the crystal structure, which might be explained by the lower
association constants of these proteins compared to psToc34.
An analysis of crystal contacts (Figure S2) reveals that the largest
contact between monomers in the crystal measures approxi-
mately 670 A2, whereas the dimer interface characterized for
psToc34 measures 2750 A2 (Sun et al., 2002). Similar to what
is observed with psToc34, the structures of atToc33 in different
nucleotide loading states are very similar, reflected in an rmsd
of 0.36 A for 239 C. positions. There is only weak electron
density for residues 68-70 in atToc33gpp and for residues
69-71 in atToc33gwppnp. These residues of the switch | region
were thus not included in the models. To examine the impact
of dimerization on the structure of the GTPase, we compared
monomeric atToc33gpp and atToc33gmppnp With the dimeric
psToc34gmppnp and psToc34gpp Structures. All four structures
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are highly similar; e.g. psToc34guppnp and atToc33guppnp ShOwW
an rmsd of 0.95 A for 232 C, positions. The main difference oc-
curs in the switch | region: not restricted by the dimer contact,
switch I'in atToc33 is poorly ordered and moved slightly away
from the nucleotide binding pocket (Figures 3A and 3B). In di-
meric psToc34, switch | is fully resolved and partly stabilized
by interaction with the CB and helix a5 in trans (Figures 3C and
3D). Positioning of G2/switch lin psToc34 is maintained by inser-
tion of psPhe70 into a hydrophobic pocket. Although switch Il
shows a similar conformation in all four structures (Figures 3A-
3D), minor movements in this region can be explained by a dimer
contact of psTyr102. Restricted switch movement is thus a fur-
ther characteristic of the two Toc33/34 GTPases atToc33 and
psToc34, but even more pronounced in the dimeric form.

Restricted Switch Movement Has Implications

for the Catalytic Cycle

Our analysis reveals that the nucleotide load of Toc33/34 has
only a minimalinfluence on dimerization. This is reflected in finite
changes observed for the switch regions. We therefore investi-
gated the switch regions in detail to explain this unusual feature
for a GTPase. Any significant movement of the G3/switch Il re-
gion is constrained by a leucine (atLeu95/psLeu97) that enters
into a hydrophobic pocket formed by the a2 and a3 helices (Fig-
ure 4A). It was predicted thata hydrophobic residue in this region
together with a hydrophobic binding pocket could result in the
now experimentally confirmed conformation (Mishra et al.,
2005). Switch Il is fixed in both the GMPPNP- and GDP-bound
forms of the GTPase, and moved away from the catalytic center.
This is surprising because in other small GTPases, switch Il often
carries a catalytic residue; in Ras p21, this is the residue GIn61
(Figure 4B; Pai et al., 1990). However, an equivalent to p21-
GIn61 is absent in Toc33/34, and hence the classic function of
the G3/switch llin the catalytic cycle must be taken over by other
protein regions, or by interaction partners.

One of the most obvious candidates is the switch I region of
Toc33/34. Although switch | is restricted—partly—by the dimer
interface, the region shows above average B factors and retains
some conformational flexibility, as seen from a comparison of
different protomers in the crystal unit cell (Figure S3). Sequence
analysis shows that the catalytic threonine, typical for the small
GTPases of the TRAFAC class, is replaced by glutamate (Leipe
et al., 2002). Whereas this residue points away from the nucleo-
tide binding pocket in psToc34gmppnp, its carboxyl head group
takes the position of g-phosphate in psToc34gpp (Figure 5). In
the GDP-bound state, psGlu73 participates in the coordination

of the Mg2*ion, as does the g-phosphate inthe GMPPNP-bound
state (Figure S4). Thus, movement in the switch | region is
reduced to a movement of the side chain of Glu73. Because of
its role in sensing the nucleotide loading state, we designate res-
idue psGIu73 the nucleotide “tracker.” In monomeric atToc33,
the equivalent residue atGlu70 does not perform a tracker func-
tion: the residue is not resolved in electron density and probably
moved away from the nucleotide binding pocket. Therefore,
tracking of the nucleotide loading state is of relevance only in
the context of the GTPase dimer.

Requirement for a coGAP and Identification
of a Putative Protein Binding Site
For GTP hydrolysis to occur, a polar residue is required to
position a water molecule for nucleophilic attack on the g-phos-
phate (Pai et al., 1990; Schweins et al., 1995). In one protomer of
psToc34, a water molecule is positioned between the g-phos-
phate and the backbone carbonyl of switch 1 psGly74 (Figure 5A).
The switch I region might thus play animportant role in the intrin-
sic hydrolysis reaction. Commonly, GTPases are further acti-
vated by GAP proteins that stabilize the switch regions and
supply additional catalytic residues, often the arginine finger
(Scheffzek and Ahmadian, 2005). Structural comparison of the
catalytic center of the psToc34 dimer with GTPase-GAP com-
plexes demonstrates that Arg133 in psToc34 in the GMPPNP-
bound state is suitably positioned to perform a function as
arginine finger (Figure S5). The inability of the dimeric contact
to significantly accelerate GTPase activity (Figure 1D) thus points
to insufficient stabilization of the catalytic center in the present
structures, seen in the remnant flexibility of switch I, or to an
absence of a catalytic residue. The GTPase dimer thus requires
another factor as coGAP, for example as described for
the GTPases Arf and Ran (Goldberg, 1999; Seewald et al.,
2003). The coGAP function is required in the GTP-bound state
of psToc34; it thus might recognize the tracker glutamate of
switch |, leading to stabilization of this region. Interestingly,
movement of the tracker glutamate opens up two tunnels in
psToc34gmppnp fOr direct access to the g-phosphate, only one
of which is presentin psToc34gpp (Figures 6C and 6D). Hence,
no structural rearrangement in the dimeris required fora coGAP
that binds and inserts a catalytic residue through one of these
holes, whereas the second hole could function as a phosphate
exit after GTP has been hydrolyzed.

Theidentification of the putative binding site eitherfora coGAP
or for the precursor protein is helped by two observations. We
identified a hydrophobic cavity inside the structure of Toc33/34

Figure 1. Toc34 from Pisum sativum Is Dimeric

(A) The protein is shown as a ribbon diagram with GMPPNP in stick representation. The magnesium ion is colored in green; secondary structure elements are
indicated. The monomer on the right-hand side is colored in gray. The conserved box (CB), characteristic for the Aig1/Toc34/Toc159-like paraseptin family, is
coloredinred; compare alignment between Toc and Aig GTPases. Insertions within psToc34 compared to the small GTPase Ras p21 (PDB code: 5P21) (Paiet al.,
1990) are shown in light blue in the structure. psArg133is shown in stick representation. Residues not resolved in electron density are indicated by a dashed line.
(B) The dimerinterface region is shown for psToc34 inthe GMPPNP- (dark) and GDP-bound states (light). The nucleotide binding site of each monomer s part of
the dimerization interface, made up of severalloops. Three loop regions are highlighted: the G2/switch I and G3/switch Il regions, the loop carrying psArg133 of
the CB, and the loop following a5. The G2/switch | loop is shifted between GDP- and GMPPNP-bound states, as it must accommodate the g-phosphate.

(C) Analytical ultracentrifugation performed using freshly prepared psToc34, or GDP- or GMPPNP-exchanged proteins (concentration 50 mM monomer protein).
Forthe sedimentation velocity runs, the distributions of sedimentation coefficients are shown. The s values were corrected for solvent density and viscosity of the
buffer (standard conditions sy, for 20 C, H,0).

(D) The apparent single-turnover rate constants forindicated concentrations of psToc34 were determined at pH 8 (see Experimental Procedures). Measurement
in the concentration range from 0.013 to 4.5 mM protein covers the stoichiometric point of dimer formation.
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Figure 2. Monomeric atToc33

(A) Indicated amounts of Hisg-tagged atToc33gpp or BSA (control) were immo-
bilized on nitrocellulose; the membrane was subsequently incubated with
atToc33-GSTgpp (at a concentration of 35 mg/ml). Binding was visualized by
immunodecoration with anti-GST antibodies.

(B) Indicated amounts of atToc33-His (left) or psToc34-His (right) loaded with
GDP (circles) or GMPPNP (triangles) were immobilized as in (A). The mem-
brane was incubated with atToc33-GST (left) or psToc34-GST (right) loaded
with GDP (circles) or GMPPNP (triangles). The amount of bound protein was
quantified and plotted against the amount of the immobilized receptor. The
average of atleast five independent experiments is shown. The lines represent
the least square fit to Equation 1.

(C) Ribbon diagram of atToc33 in the GMPPNP- (green) and GDP-bound (light
green) states. The molecule is @ monomer in the crystal. Structural elements,
nucleotide, and magnesium are indicated. A small segmentin the G2/switch |
region is not resolved in electron density in either of the two structures.

(Figure 6A). The cavity is lined with the Toc GTPase-specific
N-terminal extension, forming helices a1 and a0 (Figure 1A).
This cavity is sizable, with a volume of 62 A® when probed with
a solvent sphere of 1.4 A (calculated with VOIDOO; Kleywegt

Structure
Regulation of Toc34

and Jones, 1994). Previous Toc33/34 structures also contain
the cavity, although it has not been described (Sun et al., 2002;
Yeh et al., 2007). Cavities inside proteins are generally energet-
ically unfavorable, and might destabilize the protein structure
(Matthews, 1996), which could explain the aging effect observed
with Toc33/34 (see above). In addition, between the cavity and
the G2/G3 elements, we find in two psToc34 protomers a bound
polyethylene glycol (PEG) molecule. It lies in a shallow pocket
which is an extension of the cavity and is formed by residues
conserved in Toc33/34. The PEG molecule is bound by the
residues Asn57, Glu62, and Arg63 (Figure 6B). It is a frequent
crystallographic observation that binding of solvent molecules
alludes to substrate binding pockets in enzymes or to protein-
protein interaction sites (Becker et al., 1998; Bourne et al.,
2001; Dollins et al., 2005). The shallow PEG binding pocket in
the vicinity of switch | might be part of a binding site which is
involved in the stabilization of this switch region, and hence
could be the binding site for a coGAP. The cavity as well as
the bound PEG molecule might be functionally important
features of the GTPase—as discussed below—that need to be
further explored.

DISCUSSION

Thetwo GTPases atToc33 and psToc34 are functional homologs
(Jelic et al., 2003), and share a common 3D fold (Sun et al., 2002;
Yeh et al., 2007). Extending from earlier studies, we demonstrate
that the two GTPases have similar conformations in GDP- and
GMPPNP-bound states (Figures 1 and 2). It is documented
that both GTPases dimerize in a concentration-dependent man-
ner: for atToc33, dimerization was shown using native PAGE
analysis (Weibel et al., 2003) or gel-filtration techniques (Yeh
et al., 2007); for psToc34, dimerization was shown using gel-fil-
tration (Sun et al., 2002) or analytical ultracentrifugation (Reddick
et al., 2007). We confirm and quantify dimerization using analyt-
ical ultracentrifugation and determine the dissociation constant
Kp for the psToc34gpp dimer to be 50 + 20 mM (Figure 1C). We
show that atToc33 has a higher dissociation constant than
psToc34, and this fits previous modeling data where less polar
contacts were seen for atToc33 than for psToc34, whereas the
buried interface areas were similar in both cases (Yeh et al.,
2007). The Kp for the atToc33 dimer is outside the measurable
range for analytical ultracentrifugation, and thus we confirm
dimerization using a filter binding assay (Figure 2B).

The functional relevance of dimerization is controversial (Sun
et al., 2002; Weibel et al., 2003). An important dimer contact is
seen in both psToc34guppnp (Figure 1) and psToc34gpp (Sun
et al.,, 2002) through the conserved arginine psArg133, which
inserts into the active site of the dimerization partner. Conse-
quently, mutation of this residue abrogates dimerization (Red-
dick et al., 2007; Weibel et al., 2003). Mutagenesis data are
also somewhat controversial. When replacing the conserved
arginine in atToc33 by alanine, either no (Weibel et al., 2003) or
only a minor reduction in catalytic rate is observed (Yeh et al.,
2007). The same replacement in psToc34, however, leads to
a drastic decrease in hydrolysis rate (Reddick et al., 2007). The
differences in dimerization behavior between the two proteins
reported here could in part explain these contradictory results.
An important issue is whether the arginine serves a role as an
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Figure 3. Comparison of the Switch Regions and the Dimerization Interface of atToc33 and psToc34

(A and B) G2/switch I and G3/switch Il regions in monomeric atToc33gpp (A) and atToc33gmppnp (B). Only selected secondary structure elements are shown for
clarity; GMPPNP is shown in stick representation. Residues Ala69 and Glu70 are not resolved in electron density (dashed line).

(C and D) G2/switch I and G3/switch Il regions in dimeric psToc34gpp (PDB code: 1H65) (Sun et al., 2002) (C) and psToc34gmppnp (D). Only selected secondary
structure elements are shown for clarity; GMPPNP is shown in stick representation. Arg133 of the CB from the second monomer is in contact with nucleotide.
Phe70 of the G2/switch I region and Tyr102 of the G3/switch Il region are seen in a dimer contact.

arginine finger (Sun et al., 2002), described before for GTPase-
GAP complexes (Scheffzek et al., 1997, 1998) or reciprocally
activated GTPase dimers such as the SRP GTPases FtsY and
Ffth (Connolly and Gilmore, 1993; Egea et al., 2004; Focia et al.,
2004), the GTPases hGBP belonging to the so-called large
GTPases of the dynamin type (Prakash et al., 2000), or the
GTPase MnmE involved in tRNA modification (Scrima and Wit-
tinghofer, 2006). In all these cases, dimerization increases the
intrinsic hydrolysis rate by one or two orders of magnitude, and
dimerization preferentially occurs in the GTP-bound state,
although a common mechanism or dimerization interface has
not been derived. We demonstrate about 1.5-fold activation of
psToc34 by dimerization, in keeping with previous reports on
psToc34 (Reddick et al., 2007) and atToc33 (Yeh et al., 2007).
Although this level of activation is far below the values reported
for GTPase-GAP complexes (Scheffzek et al., 1998), the slight
preference for dimerization in the GDP state also contradicts

the GAP paradigm (Figures 1C and 2B). However, the latterresult
is susceptible to experimental error because of documented
protein aging, and thus these data require further experimental
clarification.

The biochemical data suggest the Toc33/34 homodimer is not
a GAP complex, and thisinterpretationis supported by the struc-
tural data. The structures of psToc34gmppnp in cOmparison with
the one of psToc34gpp (Sun et al.,, 2002), or the structures of
atToc33gmppnp in comparison with atToc33gpp, do not show
any changes that would be consistent with GTPase activation
(Figures 1 and 2). Indeed, that Toc33/34 would be optimized to
function in the dimeric context, possibly forming importantinter-
actions with other proteins, is supported by two observations.
First, the switch movement of psToc34 is reduced to the move-
ment of psGlu73 and only seeninthe dimeric state of the GTPase
(Figure 5), thatis, in psToc34. The GTPase cycle could then serve
to modulate interaction with, for example, subunits of the Toc
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Figure 4. Comparison of the G3 Regions in psToc34 and Ras p21
(A) The conformation of G3/switch Il isidenticalin the GMPPNP-and the GDP-
bound states of psToc34. Gly96 is in hydrogen-bonding distance to the
g-phosphate, and is conserved inthe GTPase G3 motif (DxxG). Leu97, directly
following the G3 motif, enters a hydrophobic pocket between helices a2
and a3.

(B) A similar representation as in (A) for G3/switch Il of Ras p21 (PDB code:
5P21) (Pai et al., 1990). Gly60 is in hydrogen-bonding distance to the g-phos-
phate in the GMPPNP-bound state; different from psToc34, Gly60 is turned
away from the binding pocketin the GDP-bound state of Ras p21 (not shown).
The equivalent residue to Leu97 of psToc34 is the catalytic residue GIn61 in
Ras p21, which is turned toward the nucleotide.

(C) The alignment shows the G3 region of six members of the Aig1/Toc34/
Toc159-like paraseptin GTPase family, together with three GTPases of the
TRAFAC class.

complex. The nucleotide load of psToc34 as sensed by psGlu73
would then regulate these interactions. Indeed, several reports
have indicated that Toc34 interacts with other Toc components
inanucleotide-dependent manner, for example with the translo-
cation pore Toc75 (Ertel et al., 2005) or the Toc subunit Toc64
(Qbadou et al., 2006). Second, like psGlu73, psArg133 can
only perform its function in the GTPase dimer (Figure 3).

Structure
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Although psArg133 is not able to activate GTP hydrolysis sig-
nificantly (Figure 1D), examination of active site features in the
psToc34 dimershows that psArg133 might contribute to stabiliz-
ing a reaction intermediate of GTP hydrolysis (see Figure S5 for
a comparison of psArg133 with typical arginine finger interac-
tions). Intrinsic catalytic activity of psToc34 can be explained
by the observation of a water molecule positioned for an attack
on the g-phosphate (Figure 5). However, the positioning and
probably the polarization of this water by the carbonyl oxygen
of psGly74 are not ideal. In addition, this part of the G2/switch |
element shows some flexibility (Figure S3), suggesting a coGAP
is required to stabilize this element and to position the attacking
water more properly. An alternative suggestion is that a coGAP
directly supplies a catalytic residue to accelerate GTP hydroly-
sis. Interestingly, we find that the g-phosphate is accessible in
the GMPPNP- but not in the GDP-bound state, through move-
ment of the switch | glutamate psGlu73 (Figure 6D). The tunnel
identified is ideally suited for a catalytic residue of an interacting
coGAP to enter and position and polarize a water molecule.
Other Toc subunits might act as coGAP, potentially recognizing
psGlu73inthe GMPPNP-bound state of the GTPase. This would
naturally fit the picture to ensure that the GTPase is in contact
with the pore, to signal “ready”.

Toc33/34 acts as a precursor protein receptor (Gutensohn
et al., 2000; Jelic et al., 2003; Kouranov and Schnell, 1997;
Schleiff et al., 2002). In fact, here we identify an internal cavity
in Toc33/34 (Figure 6A; Figure S6) suitable for proteininteraction.
This cavity in Toc33/34 might be responsible for the observed
aging effects of the recombinant proteins. We believe the fea-
tures of this cavity to be of relevance and propose that binding
of precursor protein could occur here. It will be interesting to
probe for the conformational changes that are to be expected
when the cavity engages in protein recognition. Interestingly,
chloroplast transit peptides have a propensity to form amphi-
pathic helices (Bruce, 2000), and thus an attractive hypothesis
is exchange of helix a0 of Toc33/34 with the helical part of the
signal peptide; the cavity would provide a void foraccommoda-
tion of the side chains, as signal peptides vary in sequence.
Importantly, helix a0 is a Toc33/34-specific feature, and con-
tained neitherin Toc159 norin the Aig GTPases. Further, identi-
fication of a PEG molecule bound between the cavity and the
switch | region in a shallow pocket on psToc34gumppnp Might
extend the precursor protein binding site (Figure 6; Figure S6).

Besides homodimerization, heterodimerization of Toc33/34
with the GTP binding domain of Toc159 has been reported
(Becker et al., 2004; Hiltbrunner et al., 2001; Smith et al., 2002;
Wallas et al., 2003). The Toc33/34/Toc159 interactionis function-
ally divergentfromthe Toc33/34 homodimer, because psArg133,
the arginine of the dimerization motif, is not conserved in register
in Toc159 (Figure 1A, alignment), and because Toc159 also mis-
ses the switch | glutamate that senses nucleotide load. Instead,
Toc159 containsthe conserved threonine of consensus GTPases
ofthe TRAFAC class (Leipe et al., 2002), and it might thus exhibit
a different mechanism for GTP hydrolysis, even whenin heterodi-
meric contact with the small GTPase. Comparing the sequences
ofthe two G domains, we have noted a five amino acid insertionin
the Toc159 sequences inside the dimerization motif, in the loop
connecting b5 with a5. When this insertion is modeled onto the
dimeric psToc34 structure (Figure 6B, yellow), it is close to the
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psToc34...

G2 element of psToc34 and thusin a very suggestive position for
stabilization of thisloop. The potential binding site forthe Toc159
insertion is highly conserved among Toc33/34 GTPases, as can
be shown by conservation mapping (Figure S6A). Further, the in-
sertion partly overlaps with the bound PEG molecule that was for-
tuitously observed in our psToc34gmppnp Structure (Figure 6;
Figure S6). Thus, binding of precursor protein and formation of
the heterodimer might be linked, as previously suggested
(Becker et al., 2004). Toc159 additionally contains two auxiliary
domains which might be involved in the regulation of heterodimer
formation. In contrastto the symmetric Toc33/34 homodimer, the
asymmetric Toc33/34/Toc159 heterodimer could thus be self-
regulating.

It is thus plausible that two distinct and different dimerization
events take place during a translocation cycle. First, homodime-
rization of Toc33/34 might occur as presented in this study.
Observed stoichiometries within the Toc complex are consistent
with homodimerization of the Toc33/34 subunits (Kikuchi et al.,
2006; Schleiff et al., 2003). However, GTPase activity in the
Toc33/34 homodimer probably requires regulation by external
factors. Second, a self-regulated Toc33/34/Toc159 heterodimer
might form. The disintegration of one dimeris a prerequisite for
the formation of the second dimer. We are currently investigating
in which order these dimerization events occur, and trying to
establish the context in which one interaction is replaced by the
other. Identification of the proposed coGAP and mapping of pre-
cursor protein interaction are further of the essence to promote
insights into the GTPase cycle of Toc33/34. This analysis is chal-
lenging because the Toc proteins are membrane associated, and
regulators such as coGAPs might be integral to the membrane.

EXPERIMENTAL PROCEDURES

Protein Expression, Purification, and Nucleotide Exchange

cDNA encoding psToc344_,66 Was ligated with pET21d between the Nco1
and Xho1 restriction sites. atToc33g1g1e 1051 and psToc34gigg 1-266 WErE
generated by PCR using atToc334_o51 (Jelic et al., 2003) or psToc344_ 46 aS
template and were cloned into pET21d (Novagen, Madison, WI, USA) to
generate atToc334_os¢-His, atToc33s1g1e 1-251-His, psToc344 066, and
psToc34g106 1-266 OF into pGEX-6P-1 to generate atToc334.551-GST (GE

e .4
c1 PB Mg”

Figure 5. Glu73 of G2/Switch | Senses the
Nucleotide Loading State in Dimeric
psToc34

a (A) psGlu73 is solvent exposed in psToc34 in the
GMPPNP-bound state. A water that might be in
position for nucleophilic attack on the g-phos-
phate is shown as a small blue sphere. The water
is in hydrogen-bonding distance to Gly74 of the
G2 region.

(B)Inthe GDP-bound state (PDB code: 1H65) (Sun
etal., 2002), psGlu73is turned toward the nucleo-
tide and takes the position of the g-phosphate. It
then coordinates the Mg2* ion.

Healthcare, Freiburg, Germany). Unless otherwise
noted, psToc34 and atToc33 denote His-tagged

al proteins that were purified using Ni-NTA affinity

chromatography (Jelic et al., 2003). For crystalliza-

tion and single-turnover hydrolysis assays, the

proteins were additionally purified by gel-filtration
chromatography using a Superdex 75 HR 26/60 column (GE Healthcare)
with 20 mM HEPES (pH 7.4) containing 150 mM KCI, 3 mM MgCl,, and 0.7
mM b-mercaptoethanol as running buffer. GST-tagged proteins were purified
according to the manufacturer’s instructions (GE Healthcare).

Fornucleotide exchange, the proteins ata concentration of 1 mM were incu-
bated overnight at4 C with2 mM GMPPNP (all nucleotides and analogs from
Sigma-Aldrich, Schnelldorf, Germany) and with 50 U alkaline phosphatase
(New England Biolabs, Frankfurt am Main, Germany). Unbound nucleotides
were removed by buffer exchange using a PD-10 column (GE Healthcare).
The individual loading state was controlled by RP-HPLC analysis using a C1g
column (Vydac, Hesperia, CA, USA) on a Merck HPLC system equipped with
an L4500 detector (running buffer: 100 mM phosphate buffer [pH 6.5],
10 mM tetrabutylammonium bromide, 7.5% acetonitrile) (Tucker et al., 1986).

Crystallization and Structure Determination

Purified proteins were concentrated to 0.5 mM and crystallized at 19 C, using
the sitting-drop vapor-diffusion technique with a 2 ml drop size. Crystals of
psToc34gwppnp Were typically obtained within 1 d in 0.2 M dipotassium phos-
phate and 20% PEG3350. Crystals of atToc33gwppnp Were typically obtained
within 3 d in 22% PEG1500 and 15% glycerol. Crystals of atToc33gpp Were
obtained within 3 d in 24% PEG1500 and 20% (v/v) glycerol. Crystals were
harvested in cryoprotectant buffer containing 25% glycerol and flash-frozen
for storage in liquid nitrogen. Point mutations introduced into atToc33guppnp
and psToc34gmppnp improved crystal quality and were used for the structural
analyses: atToc33 was crystallized as S181E variant; psToc34 was crystallized
as E10G variant. The amino acid exchanges have no influence on tertiary
structure, as seen here.

Data were collected on the tunable beamline ID23-1 at the European Syn-
chrotron Radiation Facility, Grenoble, France. Data were integrated and scaled
with HKL software (Otwinowski and Minor, 1997). Data reduction, free R as-
signment, and all further data manipulation were carried out with the CCP4
suite of programs (CCP4, 1994). The structures were determined by molecular
replacement using the program MOLREP (Vagin and Teplyakov, 1997) with
psToc34 GDP (Sun et al., 2002) as a search model for psToc34 GMPPNP. It-
erative model building and refinement were carried out with the programs Coot
(Emsley and Cowtan, 2004) and REFMAC5 (Murshudov et al., 1997), cycled
with ARP (Lamzin and Wilson, 1997). Structure quality was accessed using
PROCHECK (Laskowski et al., 1993), and data have been deposited in the
PDB under codes 3BB1, 3BB3, and 3BB4.

Analytical Ultracentrifugation, Solid-Phase

Binding, and GTP Single Turnover

For analytical ultracentrifugation, psToc34 was loaded on a nickel affinity col-
umn in 20 mM Tris (pH 8.5) containing 100 mM NaCl, 1 mM MgCl,, 10 mM
arginine, 10 mM imidazole, and 5% glycerol and eluted using an equivalent
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Figure 6. Potential Binding Sites on the
Surface of psToc34

The psToc34guppnp dimer, with one monomer
shown in surface representation and another
monomer shown in cartoon representation. The
Toc34-specific N-terminal extensions and G2/
switch | are shown in blue and red, respectively.
Bound GMPPNP is colored in green, and a bound
PEG molecule, arising from the crystallization
buffer, is colored in dark red.

(A) A cavity of 63 A3 (gray) is identified between
helix a1, helix a0, and the central b sheet of the
GTPase domain.

(B) The PEG molecule binds in a shallow pocket on
the surface of psToc34, between the cavity and
close to the G2 element. In dimeric psToc34, this
shallow pocket forms a binding site for the loop
following helix a5, gray. In psToc159, a sequence
insertion of four residues is identified in this loop;
the loop has been modeled into the dimer, shown
inyellow.

(C and D) The b- and g-phosphates of GMPPNP
nucleotide are accessible through tunnels from
the surface in dimeric psToc34.

(C) The tunnel toward b-phosphate is open in the
GMPPNP-and the GDP-bound states of psToc34.
However, the tunnelis enlarged by the movement
of the switch residue Glu73 in psToc34gmppnp.
(D) The tunnel toward the g-phosphate is closed
in psToc34gpp but opened in psToc34gmppne,

buffer containing 2560 mM imidazole. Afterward, the buffer was exchanged with
20 mM Tris (pH 8.5) containing 100 mM NaCl, 5 mM EDTA, 10 mM arginine, 10
mM imidazole, and 5% glycerol using a PD-10 column. GMPPNP nucleotide
exchange was performed as described; GDP nucleotide exchange was per-
formed using protein at a concentration of 1 mM incubated with 10 mM
GDP overnight at 4 C. Subsequently, the proteins were gel filtered using
a Superdex 75 26/60 size-exclusion column using the nickel affinity purifica-
tion buffer. The nucleotide loading states of the proteins were controlled by
HPLC analysis.

For sedimentation velocity studies, a Beckman Optima XL-A ultracentrifuge
equipped with absorbance optics and an An60 Ti rotor (Beckman
Coulter, Fullerton, CA, USA) was used. Centrifugation runs were carried
out at 20 C at 40,000 rpm using a concentration of 50 mM monomer protein
and purification buffer as reference. Buffer density (1.01759 ml/g), buffer
viscosity (1.1832 mPa s), as well as the partial specific volume of psToc34
based on the amino acid sequence (a = 0.7410 ml/g) were calculated using
the program SEDNTERP, version 1.05 (J. Philo, D. Hayes, and T. Laue,
http://www.jphilo.mailway.com/download.htm/). The apparent sedimentation
coefficient and molecular weight distributions c(s) and c(M) were determined
with the program SEDFIT (Dam and Schuck, 2004; Schuck, 2000). Dissocia-
tion constants were derived from fitting the sedimentation velocity data with
SEDPHAT to a monomer-dimer equilibrium model (Schuck, 2003).

For determination of nucleotide-dependent association, atToc33 was pre-
loaded with nucleotides and spotted onto nitrocellulose membranes using
a 96-well vacuum manifold (Bethesda Research Laboratories, Bethesda,

through movement of the switch residue Glu73.

MD, USA). Nitrocellulose membranes were satu-
rated with 0.3% low-fat milk powder with 0.03%
BSA and then incubated with purified GST-
atToc33 (35 mg/ml) preloaded with the indicated nu-
cleotides in 20 mM tricine-KOH (pH 7.6) containing
100 mM NaCland 1 mM MgCl,. Background bind-
ing was controlled by incubation of GST-atToc33
with empty or BSA-coated nitrocellulose mem-
branes. After two washes (10 min), the bound protein was determined by im-
munodecoration with GST antibodies. Intensities were quantified with AIDA
software (Raytest, Straubenhardt, Germany). The amount of bound protein
was corrected for background staining of the blot and expressed in compari-
son to the maximal binding of wild-type protein. The binding was analyzed by
r

1Bound o = %68+E+KP2 S E+%OS+E+KP (1)
where S is the concentration of the spotted protein, E is the concentration of
the added protein (normalized), and K reflects the dissociation constant in
anonnormalized situation and an apparent dissociation constant after normal-
ization. A detailed derivation of Equation 1is presented in Supplemental Data.

For GTP nucleotide single-turnover hydrolysis, psToc34 was exchanged
with 20 mM HEPES (pH 7.4) containing 75 mM KCl and 5 mM EDTA using a
PD-10 column before incubation overnight at 4 C with 30 mM GTP. Excess
nucleotide was removed using a PD-10 desalting column (GE Healthcare),
and equilibrated with 20 mM Tris-HCI (pH 8.0) containing 75 mM KCI and 5
mM MgCl,. GTP single-turnover hydrolysis (Prakash et al., 2000) was carried
out at 20 C. GTP:GDP ratios of aliquots from the reaction mixture taken at
different time points were determined by RP-HPLC analysis. From the
changes in the GTP:GDP ratio over time, starting with GTP-loaded proteins,
the area of the nucleotide peaks was determined by a Weibull function and
the GDP fraction was calculated. The apparent hydrolysis rate was determined
by an exponential function and the distribution of the apparent rate constants
was analyzed by
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Kapp =D=T kp +0T Db=T Ky; @)

with Kapp the apparent rate constant, D the concentration of the receptorin the
dimeric state, T the total receptor concentration, and kp or Ky, the rate con-
stant for the dimeric and monomeric receptor, respectively. For details on
how Equation 2 is derived, see Supplemental Data.

ACCESSION NUMBERS

Coordinates and structure factors for psToc34guppnp, atToc33gpp, and
atToc33gmppnp Nave been deposited in the Protein Data Bank under ID codes
3BB1, 3BB3, and 3BB4, respectively.

SUPPLEMENTAL DATA

Supplemental Datainclude seven figures and Supplemental Experimental Pro-
cedures and can be found with this article online at http://www.structure.org/
cgi/content/full/16/4/585/DC1/.
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Supplemental Experimental Procedures

Calculation of the Solid Phase Binding
Equation

[Bound] = — sqrt[ (K+S+E)* | 4 — S*E] + (K+S+E)/2 (E1)
is derived from

K = [ET*[SV/[Bound] (E3)
where [S] is the free concentration of spotted protein, [E] the free concentration of added protein
(normalized), [Bound] is the concentration of complexes formed and K the dissociation constant in a
not normalized situation and an apparent dissociation constant after normalization. Considering the
two relations

[E] = E — [Bound] (E4)
and [S]=S - [Bound] (ES)
where § is the total concentration of spotted protein, and E the total concentration of added protein
(normalized), equation (E3) can be written as

K = (E — [Bound])*( S — [Bound))/[Bound] (E1)
which can be rewritten as

[Bound] = + sqrt[ (K+S+E)2 /4 —S*E] + (K+S+E)/2 (E6)



The decision for the negative algebraic sign in equation (E1) comes from the following simple con-
sideration: suppose S is zero, then [Bound] must be zero as well, which satisfied with negative alge-

braic sign.

Calculation of the Hydrolysis Rate
The apparent rate constants determined for different concentrations of the receptor can be analysed
by equation (E2) for the following reason. The hydrolysis kinetic can be analyzed by
FH(t,T) = D/T * (1-exp(-kp*t)) + (T-D)/T * (1-exp(-km*t)) (E7)
with FH fold hydrolysis, D the concentration in dimeric conformation, T the total concentration of
the GTPase, kp the rate constant of the protein in dimeric conformation and the ky rate constant in
monomeric conformation. The apparent rate constant was determined at a given concentration by
FH(t)= 1-exp(-kapp™t) (E8)
can be written as
I-exp(-kqpp*t) = D/T*(1-exp(-kp*t))+(T-D)/T*(1-exp(-km™*t)) (E9)
Hence, the following three transformations lead to the relation of the apparent rate constant
exp(-kqpp*t) = 1 — (D/T*(1-exp(-kp*t))+(T-D)/T*(1-exp(-km™1))) Kapp
= - In(1 — (D/T*(1-exp(-kp*t))+(T-D)/T*(1-exp(-km™t))) / t
(E10)
Using the two approximations that In(1-x) ~ - x and exp(x) ~ 1+x (both true since x<1I), equation
(E10) can be written as

kapp= DIT * kp, + (T-D)/T * kyy (E2)
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Figure S1. Nucleotide Binding State of psToc34 GTPase

(A) Elution profile of a 1 mM mixture of GMP, GDP and GTP standards. Retention times are 3.8
min, 4.5 min and 5.6 min, respectively. (B) Elution of nucleotides from freshly purified arToc33,
showing a mixture of GDP and GTP loaded protein. (C) Elution profile of a 1 mM GMPPNP stan-
dard. The peak observed at 5 min originates from GMPPNP, while the peak at 4.0 min represents a
known impurity resulting from of the production process (GMPPNP from Sigma Aldrich has a certi-
fied purity of > 85%). (D) Elution profile of GMPPPNP loaded afToc33 using the nucleotide ex-
change protocol. GMPPNP is detectable as a single peak at 5 min retention time; the impurity ob-
served with the GMPPNP standard in (C) at 4 min retention time is not seen in the GMPPNP ex-
changed protein sample. In all experiments a volume of 20 ul of injected on the column, the protein

concentration was adjusted to 50 uM, the flow rate used was 1.0 ml/min.



# | interacting monomer | symmetry operation | interface area [A?]
1 blue -y+1/2,x+1/2,z+1/4 674.1
2 orange Y, X,-Z 424.8
3 red -y+1/2,x+1/2,z-3/4 328.5
4 brown X,Y,z-1 138.9
5 green -X,-y+1,z-1/2 82.3

Figure S2. Analysis of Crystal Contacts

The table shows the relevant interfaces formed in the crystal between the grey monomer and
neighbouring molecules, as calculated by the program PISA (Krissinel and Henrick, 2007). For
comparison, the interface observed in the psToc34 dimer has a calculated interface area of 2750 A®,



GMPPNP #

G2/Swi

p3

Lt N Bt 5
o2 ; $ G3/Swil 2/Swll
") psToc34 GMPPNP chain A P77 s psToc34 GMPPNP
R76

psToc34 GMPPNP chain H

Koenig et al., Supplement Figure 2
Figure S3. Disorder in the G2 / Switch I Element in Dimeric psToc34

(A) There are subtle changes in the G2 / switch I region, when the eight copies in the asymmetric
unit are compared. The G2 / switch I region from GIn71 to Arg76 is somewhat flexible, though the
conformational freedom is partly restricted by presence of the two prolines Pro69 and Pro75.

(B) Comparison of the G2 / switch I region between Toc34gmppne and Toc34pp. The main differ-
ence between GDP and GMPPNP states is positioning of Glu73 as discussed in the main text, this is

the nucleotide fracker residue which monitors the nucleotide loading state.
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Figure S4. Mg** Coordination in psToc and p21 Ras

(A) Coordination of the magnesium-ion in the GMPPNP state of psToc34 by Ser52 from the G1

element, the - and the y-phosphate and three additional water molecules.

(B) Coordination of the magnesium-ion in the GDP state of psToc34 by Ser52 from the G1 element,

Glu73 from the G2 element, the B-phosphate and three additional water molecules. Glu73 takes the

coordination site of the y-phosphate in Toc34mppnp as shown in (A)

(C) Coordination of the magnesium-ion in the GMPPNP state of p21 Ras. The magnesium-ion is

coordinated by Ser17 from the G1 element, the - and the y-phosphate, a Thr from the G2 element,

which is conserved among GTPases of the TRAFAC class and two additional water molecules.

(D) Coordination of the magnesium-ion in the GDP state of p21 Ras. The magnesium-ion is coordi-

nated by Serl7 from the G1 element, the B-phosphate and three additional water molecules.
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Figure S5. Comparison of psArg133 with Arginine Finger in different GTPase-GAP Complexes

(A) psToc34 CB-loop carring Argl33 inserted in frans in the nucleotide binding pocket of the
dimerisation partner. (B) RasGAP-Ras argenine finger (PDB 1WQ1). A similar confirmation of ar-
ginine fingers is observed in the Cdc42:Cdc42GAP:GDP:AIF (PDB 1GRN) and in the
Rho:RhoGAP:GDP:AIF (PDB 1TX4) structure. (C) Sec23:Sarl:GMPPNP arginine finger (PDB
IM20). (D). Cdc42:RhoGAP GMPPNP arginine finger, which is turned away from the nucleotide
and not in proper conformation for hydrolysis activation (PDB 1AM4).
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Figure S6. Binding Sites on Toc34

(A) Surface of Toc34 colored by the degree of conservation. Conservation is based on the alignment
shown in Figure S7, using the program Consurf (Glaser et al., 2003). Dark colors show highly con-
served residues, light colors variable regions. The regions around the potential binding site are
highly conserved. Model of Toc159 as well as E73 compare Figure 6. (B) A PEG molecule is bound
at a shallow cavity on the surface of psToc34. This molecule, originating from the crystallization
conditions, binds close to the G2 elements and thus is in a suggestive position for an interaction that
would occur in the Toc complex. Near the PEG binding site, there is a large cavity between helix a-
1 and helix 00 and the central B-sheet of the GTPase domain. The cavity might be also part of the
binding site.
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