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Abstract 
Epigenetic modifications and other chromatin features partition the genome on multiple 

length scales to control its biological function. Some of them like DNA methylation target 

single bases, whereas others such as heterochromatic histone modifications span regions of 

several megabases. It has now become a routine task to map chromatin marks by deep 

sequencing. However, the quantitative assessment and comparison of the topology of 

chromatin domains and their spatial relationships across data sets without a priori 

assumptions remains challenging, especially if broad domains are involved. Here, we 

introduce multi-scale correlation evaluation (MCORE), which uses the fluctuation spectrum 

of mapped sequencing reads to quantify and compare spatial patterns on multiple length 

scales in a model-independent manner. We used MCORE to dissect the chromatin domain 

topology of embryonic stem cells and neural cells by integrating sequencing data from 

chromatin immunoprecipitation, RNA expression, DNA methylation and chromosome 

interaction experiments. Further, we constructed network models that reflect the 

relationships among these features on different genomic scales. We anticipate that MCORE 

will complement current sequencing evaluation schemes and aid in the design and validation 

of mechanistic models for chromatin signaling. 

 

Background 
In eukaryotic cells most processes that involve interactions with the genome are controlled 

by the local chromatin context. Accordingly, DNA replication, DNA repair, RNA expression 

and RNA splicing have been found to be regulated by different combinations of DNA 

methylation (5mC) and histone modifications [1, 2]. The genome-wide distribution of these 

and other chromatin features, like binding sites of transcription factors, contact frequencies 

between genomic loci and transcriptional activity, can routinely be assessed by deep 

sequencing [1]. Recent methodological developments enable the analysis of low cell 

numbers or even single cells [3-5] as well as the simultaneous readout of various features 

[6]. Thus, sequencing data at unprecedented cellular resolution and throughput are 

becoming available that provide a rich source of information on molecular networks that 

shape the chromatin landscape. When attempting to dissect how these networks operate it 

becomes important to robustly identify, quantify and compare the topology of chromatin 

domains enriched in a given feature on multiple genomic length scales across different data 

sets. Currently, deep sequencing data are mostly analyzed on the basis of local enrichments 

of read density, with the goal to identify regions scoring positive for one or more features of 

interest. Most of these approaches (see Table S1 for an incomplete list) fall into two 
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categories, namely peak calling algorithms [7-9] and probabilistic network models [10-12]. 

While these provide lists of enriched loci or chromatin states in a straightforward manner, it 

remains challenging to retrieve topological quantities such as characteristic chromatin 

domain sizes or the spatial relationships between these domains in a reliable manner. 

Identification of enriched regions is not straightforward because it requires assumptions 

about the properties of these regions, e.g. their width and enrichment level. This is 

particularly problematic for the analysis of complex patterns that involve different enrichment 

levels and are therefore incompatible with binarization (Fig. S1). Furthermore, the 

information content of the local read density at individual loci is inherently limited due to the 

characteristics of deep sequencing data. Complications arise from undersampling, noise and 

technical bias that can change the apparent pattern and introduce or mask similarities 

between data sets [13-15]. For example, data from chromatin immunoprecipitation 

sequencing (ChIP-seq) experiments of histone modifications display artificial preferences for 

certain genomic regions, have different sequencing depths, or vary in signal-to-noise ratio 

due to different levels of non-specific background [14]. Because these factors change with 

genomic position and affect each genomic length scale differently they are difficult to 

account for. Consequently, peak calling results depend on user-defined input parameters 

and the specific algorithm used [16, 17]. Likewise, chromatin state annotations differ with 

respect to state number, state identity and spatial extension of the corresponding chromatin 

domains [10, 11]. These uncertainties are tolerable for identifying the most enriched regions 

or the most prevalent chromatin states. However, they may obscure the quantitative 

assessment of more complex patterns such as those observed for heterochromatic regions, 

which contain a combination of broadly distributed histone marks, 5mC and associated 

proteins [18, 19]. This impedes the comparison of experimental profiles to the predictions 

from different mechanistic models for the formation and maintenance of heterochromatin 

states (e.g. [20] and references therein). Therefore it would be beneficial to identify and 

evaluate chromatin patterns in deep sequencing data sets independently of peak or state 

annotations. 

Here, we introduce an approach termed multi-scale correlation evaluation (MCORE) that 

complements the above-mentioned repertoire of analysis methods. MCORE avoids 

assumptions about the shape and the amplitude of enriched regions and evaluates all 

mapped sequencing reads without filtering. It retrieves information from correlation functions, 

which are used for the discovery of patterns in noisy and possibly undersampled data sets in 

many fields of research [21-25]. The use of correlation functions in the context of deep 

sequencing has mostly been restricted to strand cross correlation for measuring fragment 

lengths [16, 26] and autocorrelation for comparing ChIP-seq data sets to each other [27]. 
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Key advantages of correlation functions are intrinsic removal of (white) noise, robust 

identification of characteristic spatial or temporal length scales and straightforward 

assessment of spatial relationships between two different features. Conveniently, correlation 

functions can also be used if the exact pattern geometry is unknown (Fig. S1). The length 

scales are encoded in the shape of the correlation function and their determination is 

unaffected by variations in the absolute correlation amplitude. We used MCORE to analyze 

the chromatin domain topology of embryonic stem cells (ESCs) and neural cells (neural 

progenitor/brain cells, NCs) as their differentiated counterparts, focusing on 11 different 

chromatin features. These data sets covered histone modifications and DNA methylation, 

RNA expression and genome folding, as well as binding sites of chromatin-associated 

proteins. For each feature we identified the associated nucleosome repeat length and the 

characteristic domain sizes along with their relative abundance in the genome. In a pair-wise 

analysis we determined the (anti-)colocalization and spatial relationship between features on 

different genomic scales and used the results to construct network models for chromatin 

signaling. We compared ESCs to NCs to retrieve information about the spatial 

reorganization of chromatin during differentiation and to map the global transitions that 

occurred at active and repressive chromatin domains. Alterations were most pronounced for 

H3K9me3/H3K27me3 regions that changed their size, their location within chromosome 

territories and their positioning relative to DNA methylation and to each other.  

 

Results 
Comparison of MCORE to other sequencing analysis workflows  

The MCORE workflow in comparison to the currently most common approaches for deep 

sequencing analysis is illustrated in Fig. 1 and Table S1. First, all types of data sets were 

transformed into normalized read occupancy profiles. Similar to other methods, a 

normalization step was included in the MCORE analysis. This takes into account that the 

observed coverage of a genomic region depends not only on its actual abundance after 

extraction but also on multiple other factors. For ChIP-seq samples these include the 

propensity to be immunoprecipitated, ligated, amplified, sequenced and mapped. To correct 

for these multiplicative biases, sample reads were divided by input reads for 

immunoprecipitation (IP) experiments or by the sum of converted and unconverted reads for 

bisulfite sequencing (BS-seq). IP experiments such as ChIP-seq, chromatin interaction 

analysis with paired-end tag sequencing (ChIA-PET) and high-throughput chromosome 

conformation capture (Hi-C) yielded significant background correlation due to non-specific 

binding of DNA and proteins to beads or bead-antibody complexes [28]. Accordingly, these 
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types of data sets were further corrected by subtraction of a weighted control IP signal 

obtained from an IP with non-specific antibodies (Fig. S2A). The weighting factor reflects the 

contribution of non-specifically precipitated DNA in each sample and removes the correlation 

between specific IP and control IP (Materials and Methods). As expected, the contribution of 

non-specific signal depended on the quality of the antibody and on the enrichment levels of 

the specific IP-signal. H3K9me3 ChIP-seq data, for example, were affected more strongly by 

this correction than H3K4me3 ChIP-seq data (Fig. S2B) because H3K4me3 domains were 

more distinct and exhibited larger enrichments than H3K9me3 domains.  

Peak calling or dynamic network models use occupancy profiles to define peaks or 

chromatin states based on local enrichments (Fig. 1A). In contrast, MCORE computes 

correlation functions from the sequencing read occupancy without binarizing the data. To 

this end, normalized occupancy profiles from two different data sets were shifted with 

respect to each other along the genomic coordinate, and the normalized Pearson correlation 

coefficient for each shifting distance ∆x was calculated and analyzed (Materials and 

Methods). In contrast to rank correlations the Pearson correlation coefficient accounts for the 

enrichment values within the normalized occupancy profile and therefore preserves the 

biologically relevant information (Fig. S3, Fig. S4). We computed three types of correlation 

functions with different biological meaning: (i) the correlation function between two biological 

replicates, yielding the domain topology for a chromatin feature (Fig. 1B), (ii) the correlation 

function between the same feature in two different cell types, providing information on the 

positional conservation of a given chromatin mark across cell types (Fig. 1C), and (iii) the 

correlation function between two different features in the same cell type, reflecting their 

genome-wide relationship such as co-localization or shifted localization (Fig. 1C). The use of 

at least two independent data sets (either two biological replicates or two samples 

interrogating different features or cell types, see Eq. 4) for the calculation of each type of 

correlation function suppresses spurious noise that is uncorrelated between independent 

experiments and does therefore not contribute to the correlation. 

To compare co-localization values among differently distributed marks we normalized cross-

correlation functions with respect to their replicate correlation (Materials and Methods, Eq. 

5). This step was required because broadly distributed marks tended to yield smaller cross- 

and replicate correlation coefficients than marks forming narrow and well-positioned 

domains. As illustrated in Fig. 1C, positive correlation indicated co-localization at a given 

shift distance, whereas negative correlation reflected mutually exclusive modification or 

binding. Each decay length and its contribution to the correlation function encoded a domain 

size and its abundance, whereas superimposed oscillations reflected nucleosome spacing 

. CC-BY-NC-ND 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/054049doi: bioRxiv preprint first posted online May. 18, 2016; 

http://dx.doi.org/10.1101/054049
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5 

[27, 29]. Where necessary, the correlation function can be used as a starting point to identify 

individual regions of interest as described below. 

MCORE is complementary to peak calling, which typically aims to identify enriched regions 

without larger gaps. As the probability to find modified regions without spurious gaps 

decreases with size, broad regions are prone to get lost or fragmented in such analyses. 

This phenomenon is more or less pronounced depending on the settings and the algorithm 

used as shown for H3K9me3 in Fig. S5B. Further, in peak calling it is often challenging to 

identify and remove false-positive/negative peaks that are caused by the inherent properties 

of sequencing data sets like noise, artificial overrepresentation of particular genomic regions 

[30, 31] or insufficient read coverage [13]. An example for H3K36me3 is shown in Fig. S5C. 

Finally, nested structures like broad domains that contain smaller highly enriched domains 

cannot be reproduced with a set of non-overlapping peaks (Fig. S1). These issues 

complicate the quantitative assessment of patterns and domain structures from lists of 

enriched regions. MCORE, however, retrieves information about patterns upstream of peak 

calling analyses and is relatively robust towards uncertainties at individual loci because 

correlation functions are calculated from the entire collection of sequencing reads in a large 

genomic region (see Fig. S6, S7 for the influence of read coverage). 

 

Interpretation and quantification of correlation functions 

We quantified the information contained in correlation functions by first analyzing their decay 

spectrum in a model-independent manner and by subsequently fitting a generic model 

function [25] as described in the Materials and Methods section. This is illustrated for a 

simulated data set in Fig. S8. As a first step, inflection points (in logarithmic representation) 

were numerically determined, yielding the decay lengths that are present in the correlation 

function. Depending on the type of correlation function these decay lengths represent 

domain sizes or separation distances (Fig. 1C). Furthermore, the Gardner transformation 

was computed, which displayed peaks at the characteristic decay lengths [32]. For multi-

exponential decays the amplitudes of the Gardner spectrum are directly related to the 

abundance of the respective component. Both approaches were independent of input 

parameters or model assumptions. Finally, we fitted the correlation function to quantitatively 

describe the domain size spectrum (Materials and Methods). Because decay lengths and 

nucleosome repeat length follow from the change of the correlation coefficient with shift 

distance, these parameters are independent of the absolute correlation amplitude. This is 

beneficial for the analysis of data sets that are not properly normalized due to low 

sequencing depth or lack of suitable control samples. 
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Correlation functions can be compared to each other based on errors obtained from Fisher 

transformation or bootstrapping (Fig. 2, Fig. S9, Materials and Methods). These errors reflect 

variations of the correlation coefficient among different positions within the genomic region of 

interest. Whereas Fisher transformation is exact for normally distributed enrichment data, 

non-parametric bootstrapping is generally applicable. To validate genome-wide relationships 

or domain topologies we found it instructive to assess variations among different 

chromosomes. If more than two replicates were available, replicate correlation functions 

calculated for each combination of independent samples were combined to account for 

differences among experiments (Fig. 2, Materials and Methods). To compare cross-

correlation functions in this manner at least two replicates for each interrogated feature were 

required. We found these errors most meaningful because the variability among biological 

replicates can typically not be neglected and should be used as a reference when comparing 

different correlation functions to each other. 

We found that the shape and the amplitudes of correlation functions were well reproducible 

when normalized according to the workflow described above. This was also true when 

comparing our samples with published histone modification ChIP-seq samples from other 

labs (Fig. 2C, Fig. S10). Because correlation curves are series of normalized correlation 

coefficients, pair-wise comparison and statistical testing can be conducted at every shift 

distance based on the respective value and its error (Fig. S9). In general, two curves might 

not be globally different from each other for every shift distance but might nevertheless 

exhibit significant differences on a specific length scale. 

In summary, MCORE yields compact genome-wide representations of chromatin features in 

the form of correlation functions that can be quantitatively evaluated and compared to each 

other. It allows to (i) determine domain topologies (Fig. 1B), (ii) assess spatial relationships 

(Fig. 1C), (iii) test the reproducibility of experiments, or (iv) assess variations caused by 

changes in experimental conditions, e.g. the use of antibodies from different suppliers (Fig. 

S11). In contrast to the Pearson correlation coefficient between two data sets alone, the 

normalized correlation function provides insight into the similarity of the data sets on a broad 

range of length scales. Thus, MCORE can detect changes in domain size, amplitude or 

relative genomic position and can be used to track the re-organization of the epigenome 

among different cell types as shown below. 

 

Domain topology and nucleosome pattern of modified regions in ESCs and NCs 

We used replicate correlation functions to dissect the domain structures and nucleosome 

patterns in ESCs and NCs throughout the genome (Fig. 3A, B, Fig. S12 and Tables S2-3). 

Most features studied here, such as the histone modification H3K9me3, displayed complex 
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domain size distributions with multiple characteristic length scales (Fig. 3A, B). An exception 

was H3K4me3, which in agreement with published data [33] formed almost exclusively 

distinct peaks of roughly 1900 bp or 9-10 nucleosomes in size in both ESCs and NCs. For 

H3K36me3 we found a typical domain size of 24-30 kb, which is of the same order of 

magnitude as the average gene length in the mouse genome (according to NCBI Build 37, 

mm9). The nucleosome repeat length varied among domains carrying different histone 

modifications, with 218 bp for H3K27me3 in NCs and 182 bp for H3K9me3 and H3K36me3 

in NCs (Tables S2-3). This suggests that nucleosome spacing is differentially regulated and 

linked to the chromatin state, consistent with previous reports [27, 34]. 

The initial decay of most replicate correlation functions is caused by the reduced probability 

to find the same modification at the neighboring nucleosome and is therefore associated 

with a domain size of a single nucleosome. Notably, a prerequisite for this interpretation is 

that the occupancy profile is properly normalized and not heavily undersampled, which is 

validated for representative profiles in Fig. S6 and Fig. S7. Accordingly, homogenous 

domains that primarily contain equally modified nucleosomes produce a weaker initial decay 

than domains that contain a mixture of modified and non-modified or differently modified 

nucleosomes. Whereas the subtle initial decay for H3K4me3 in ESCs and NCs (Fig. 3A, B 

and Tables S2-3) is indicative of homogenous domains, the pronounced decay for H3K9me3 

in NCs (Fig. 3B, Table S3) suggests that this modification forms discontinuous domains with 

gaps. This is corroborated by the absence of isolated nucleosomes with high H3K9me3 

enrichment levels outside broader domains (Fig. S13), which could also be responsible for a 

steep decay in the correlation function because such nucleosomes would have 

unmethylated neighbors. 

In summary, these observations indicate that different histone modifications form domains 

with different topology. Based on the domain size and frequency distribution obtained from 

MCORE, an assignment to specific genomic loci can be made, e.g. by evaluating the 

normalized occupancy profiles with a sliding window corresponding to a domain size of 

interest. This is illustrated in Fig. 3C and Fig. S14 for broad H3K9me3 domains, which 

according to MCORE prevailed in NCs. 

 

Changes in chromatin patterns during stem cell differentiation  

To identify changes of chromatin features during stem cell differentiation we conducted a 

comparative MCORE analysis of more than 60 deep sequencing data sets from ChIP-seq 

(histone modifications: H3K4me1, H3K4me3, H3K9me3, H3K27ac, H3K27me3, H3K36me3, 

binding sites of RNA polymerase II (RNAP II) and transcription factors TAF3, Oct4 and 

Otx2), BS-seq, RNA-sequencing (RNA-seq), Hi-C and RNAP II ChIA-PET experiments in 
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ESCs and NCs (Fig. 3, 4, Fig. S15-18, Table S4). Normalized correlation amplitudes at zero 

shift distance were assembled into a matrix (Fig. 4A, red/blue), which reflects co-localization 

or mutually exclusive localization of different features. In both cell types we found more co-

localizations than mutual exclusions, which suggests that the set of chromatin features 

analyzed here tends to localize to the same part of the genome. In general, mutual 

exclusions were weaker than co-localizations as judged by the absolute values of the 

respective normalized correlation coefficients. 

In ESCs, the strongest co-localization was found among features related to actively 

transcribed genes (H3K4me1, H3K4me3, H3K27ac, H3K36me3, RNAP II, RNAP II ChIA-

PET). Notably, H3K36me3, which is known to be associated with active genes, also co-

localized with H3K9me3/H3K27me3, which are traditionally considered heterochromatin 

marks. This might reflect (i) the presence of repressed genes not devoid of H3K36me3 [35], 

(ii) the occurrence of H3K9me3 and H3K27me3 at active genes [33], and/or (iii) the 

presence of H3K36me3 domains outside of coding genes (Fig. S19). Mutual exclusion was 

found between RNAP II and the repressive marks H3K27me3 and 5mC (but not H3K9me3) 

in ESCs. Furthermore, inter-chromosomal contact sites were depleted around H3K27me3 in 

ESCs, indicating that H3K27me3 domains localized preferentially inside chromosome 

territories. 

In NCs, co-localization among features associated with active chromatin was conserved and 

tended to become stronger (Fig. 4A). Most activating modifications retained their domain 

size structures and genomic positions on a global level (Fig. S16). In contrast, H3K9me3 

and H3K27me3 redistributed during differentiation in a way that their co-localization with 

each other, with 5mC and with some of the activating marks like H3K4me1 increased (Fig. 

4A, D, Fig. S17). In particular, the following changes are noteworthy: (i) Both the H3K9me3 

and H3K27me3 modification formed broader domains in NCs compared to ESCs, which led 

to a stretched decay in correlation functions for NCs compared to the steeper decays in 

correlation functions for ESCs (Fig. 3A, B, Fig. 4B). (ii) The normalized correlation of 

H3K9me3 between ESCs and NCs decreased compared to the normalized correlation 

between replicates from the same cell type (Fig. 4B). The same tendency was observed for 

H3K27me3. These differences suggest partial re-location of H3K9me3/H3K27me3 during 

differentiation because otherwise correlation functions between ESCs and NCs would 

resemble the correlation function calculated for the replicates from the same cell type, and 

all curves in each panel would essentially be identical. (iii) The normalized correlation 

between H3K9me3 and H3K27me3 increased in NCs (Fig. 4C), which is indicative of 

stronger co-localization of both marks in NC ensembles. (iv) Correlation functions for 5mC in 

ESCs, NCs and between both cell types were similar (Fig. S16). Thus, global changes in the 
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genome-wide 5mC pattern were minor, consistent with previous findings [33]. (v) The 

normalized correlation between H3K27me3 and 5mC was higher in NCs compared to ESCs 

(Fig. 4A, Fig. S18A), suggesting stronger co-localization of both marks. Normalized 

correlation between H3K9me3 and 5mC increased for large shift distances in NCs, implying 

that extended H3K9me3 domains formed around pre-existing 5mC sites (Fig. S18A). (vi) 

Substantial mutual exclusion was found between H3K9me3 and inter-chromosomal contacts 

in NCs but not in ESCs, which suggests that H3K9me3 was re-localized to the interior part of 

chromosome territories (Fig. 4C). H3K27me3 resided preferentially inside chromosome 

territories already in ESCs and did not change its position in NCs (Fig. 4C). 

 

Differential relationships among chromatin features in ESCs and NCs 

Next, we determined the characteristic genomic separation distance for each pair of features 

(Fig. 4A, green color coding). Whereas correlation functions for co-localizing features tend to 

decrease monotonously, correlation functions for shifted features exhibit local maxima at 

their characteristic separation distance (Fig. 1C). Correlation functions for features that co-

localize at some places in the genome and are shifted with respect to each other at other 

places exhibit an initial decay that is followed by local maxima (Fig. 4C, D). This type of 

information is lost in evaluation schemes that exclusively assess overlap. Only for simple 

cases, such as H3K4me3 and H3K36me3 that localize side by side at promoters and bodies 

of active genes (Fig. S5), similar information can be obtained by determining distances 

between adjacent peaks across data sets (Fig. 4E, F). However, if at least one of the 

chromatin features of interest forms broad domains that become partitioned into several 

smaller enriched regions by peak calling, information beyond the scale of a peak or the 

distance between neighboring peaks is not accessible. Examples for pairs of features that 

are shifted with respect to each other in ESCs but overlap and co-localize in NCs are 

H3K4me1-H3K9me3, H3K4me3-H3K27me3 and H3K9me3-H3K27ac (Fig. 4A, D). These 

changes are in agreement with the global reorganization of H3K9me3 and H3K27me3 in 

NCs described above. 

 

Network models for relationships among chromatin features on multiple scales 

The cross-correlation functions introduced above represent the scale-dependent 

relationships between pairs of chromatin features. Accordingly, we used these values to 

construct network models that reflect the associations among all features assessed here for 

a particular genomic scale (Fig. 5). Features were arranged based on their associations at 

zero shift distance, with positively correlated features positioned close to each other 

(Materials and Methods). As described above, activating histone modifications such as 
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H3K4me1, H3K4me3 and H3K27ac co-localized with RNAP II and RNAP II ChIA-PET sites 

in both ESCs and NCs. Repressive marks including H3K9me3, H3K27me3 and 5mC were 

also positively associated with each other, with stronger correlations in NCs than in ESCs. 

H3K36me3 exhibited positive correlations with both activating marks and repressive marks. 

For increasing genomic distances, associations among different features changed in a 

characteristic manner, reflecting the action of mechanisms that establish chromatin patterns 

on different scales. Activating features were still associated with other activating features at 

the adjacent nucleosome (200 bp shift), which indicates that they form chromatin domains 

that extend beyond a single nucleosome. In contrast, the cross-correlation among repressive 

marks at neighboring nucleosomes decreased considerably compared to their correlation at 

the same nucleosome. This indicates the presence of nucleosomes (without an equally 

modified neighbor) that either carry at least two repressive marks simultaneously, switch 

between two different repressive marks over time, or stably carry different repressive marks 

in different cells. All of these scenarios would produce positive correlation in the ensemble 

average. At a shift distance of about ten nucleosomes (2000 bp), most associations among 

activating histone modifications were lost, reflecting the relatively limited spatial extension of 

the respective domains (Tables S2-3). In contrast, correlations between repressive marks 

decreased only moderately when comparing values for shift distances of one and ten 

nucleosomes. This finding is consistent with their occurrence in broad domains with low 

enrichment levels, i.e. the presence of large genomic regions that contain repressive marks 

at moderate density. The differential scale-dependence found for relationships among 

activating and among repressive marks suggests distinct topologies of the respective 

chromatin domains and thus fundamental differences in the mechanisms for their 

establishment and maintenance. 

 

Reorganization of heterochromatin components 

To further investigate the changes in heterochromatin organization during differentiation of 

ESCs into NCs inferred from the MCORE analysis above (Fig. 4), we dissected the core part 

of the network around H3K9me3. To this end we compared the distributions of the H3K9me3 

mark, the histone methyltransferase SUV39H1 that sets this mark in pericentric 

heterochromatin, and the two heterochromatin protein 1 isoforms HP1α and HP1β to each 

other. Both SUV39H1 and HP1 contain chromodomains that recognize H3K9me3, but the 

contribution of these interactions to their genome-wide binding profiles has not been studied 

comprehensively. First, we asked if the two HP1 isoforms displayed cell type-specific 

chromatin interaction patterns. We found that the genomic distributions of HP1α and HP1β 

were different from each other in both ESCs (Fig. 6 A-C) and NCs (Fig. 6 D-F). In ESCs, 
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HP1β formed broader domains than HP1α (Fig. 6A) that were less correlated with H3K9me3 

(Fig. 6B) but rather overlapped with H3K36me3 (Fig. 6C). This somewhat surprising finding 

supports recent work, which showed that HP1β but not HP1α is essential for proper 

differentiation and maintenance of pluripotency in ESCs, where it is enriched in exons but 

not in pericentric heterochromatin [36]. The nuclear distribution of HP1β in ESCs might be 

related to its function in splicing [37]. In NCs, HP1α and HP1β displayed moderate 

differences in their domain structure (Fig. 6D, G), with a stronger preference of HP1α for 

broad domains. In contrast to ESCs, both isoforms strongly co-localized with H3K9me3 in 

NCs (Fig. 6 E), in line with their well-established role as heterochromatin components in 

differentiated cells ([20] and references therein). Co-localization with H3K36me3 was also 

observed (Fig. 6F), consistent with the overlap between H3K9me3 and H3K36me3 domains 

in NCs found above. Next, we assessed the composition of H3K9me3 domains in NCs. 

H3K9me3 formed both broad and intermediately sized domains (Fig. 6D, Fig. 6G) but 

SUV39H1 formed only broad domains. This is apparent from the fast decay of the replicate 

correlation function for SUV39H1 (Fig. 6D, red). Consistently, co-localization among 

HP1α/β, SUV39H1 and H3K9me3 was only found within broad domains (Fig. 6E). 

These findings suggest the presence of SUV39H1-independent H3K9me3 domains in NCs, 

which have also been described in ESCs [38], and indicate that the presence of H3K9me3 is 

not sufficient for stably recruiting SUV39H1 or HP1 to chromatin. The fact that different types 

of H3K9me3 domains within the same cell vary in molecular composition is consistent with a 

looping mechanism in which domains are established and maintained around high-affinity 

nucleation sites [20, 39] that primarily determine the genome-wide distribution of SUV39H1 

(Fig. 6H). H3K9me3 domains established by other methyltransferases are expected to lack 

such nucleation sites and therefore to contain only transiently bound SUV39H1 molecules 

that are recruited via the weaker interaction between H3K9me3 and their chromodomain. 

Whereas a looping model does not rely on H3K9me3-dependent SUV39H1 recruitment to 

enable spreading, this type of recruitment is essential for feedback-driven spreading 

schemes. According to these, every nucleosome carrying H3K9me3 should efficiently recruit 

SUV39H1, no matter where it is located within the genome or how the surrounding domain 

was established, and H3K9me3-dependent recruitment of SUV39H1 should affect the size 

and stability of all H3K9me3 domains in the same way. Although further experiments are 

required to fully understand the underlying molecular details of heterochromatin 

reorganization during differentiation, these observations suggest that broad H3K9me3 

domains in NCs are formed by site-specific recruitment of SUV39H1 and that H3K9me3-

dependent recruitment of SUV39H1 is much weaker. These insights provide a starting point 
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to uncover the pathways that are responsible for establishing differently sized 

heterochromatin domains with distinct molecular composition. 

 

Model for changes of chromatin features during differentiation 

The MCORE results on domain size distributions (Fig. 3), co-localizations and separation 

distances (Fig. 4, Fig. 5) lead us to the model for the reorganization of chromatin during 

differentiation of ESCs into NCs depicted in Fig. 7. H3K9me3 and H3K27me3 domains 

become larger, stronger co-localized (Fig. 4B, C) and rearranged around sites of preexisting 

5mC during the transition from ESCs to NCs (Fig. S18A). This rearrangement leads to a 

number of alterations in the relationships between H3K9me3/H3K27me3/5mC and other 

chromatin features in NCs: (i) H3K27me3 and H3K9me3 co-localized stronger with active 

marks including H3K4me1, H3K4me3, H3K27ac and RNAP II as well as H3K36me3 

(Fig. 4A, Fig. 5). (ii) 5mC co-localized somewhat stronger with H3K36me3 (Fig. 4A, Fig. 

S18A). (iii) Whereas 5mC and H3K27me3 were already depleted from the surface of the 

chromosome territory in ESCs (Fig. 4C, Fig. S18B), H3K9me3 moved into the interior of the 

territory in NCs (Fig. 4C). The positive correlations between H3K4me1-H3K27me3, 

H3K4me1-H3K9me3 and H3K4me1-H3K36me3 remained stronger in NCs than in ESCs 

also on larger genomic scales up to ten nucleosomes (Fig. 4D, Fig. 5, Fig. S17), indicating 

that they are caused by NC-specific broad domains. In summary, these findings suggest that 

the main chromatin transition during differentiation from ESCs into NCs is the rearrangement 

of H3K9me3/H3K27me3 domains, which in NCs extend beyond repressive heterochromatin 

and overlap at least to some extent with chromatin regions that carry activating histone 

marks. The observations in Fig. 6 suggest that site-specific nucleation sites rather than pre-

existing H3K9me3 domains are responsible for recruiting the SUV39H1 methyltransferase to 

genomic regions covered by broad H3K9me3 domains in NCs. 

 

Discussion 
The quantitative understanding of how cells organize their genome into cell type-specific 

chromatin states is important for the description of all processes that require access to the 

genetic information. While the effects of soluble enzymes can be represented by simple rate 

equations, the polymeric nature of chromatin introduces a spatial relationship among 

nucleosome states. As a result, nucleosomes are influenced by the adjacent chromatin 

segments and patterns can form along the genomic coordinate. These patterns are present 

on different length scales and represent an extra layer of complexity, which is an essential 

part of the regulatory networks that control genome functions. For example, repressive 
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histone modifications form broad domains that are relatively independent from the 

underlying DNA sequence and can be transmitted through at least several cell divisions [20, 

40-42]. Furthermore, chromosomes fold into topological domains that determine the contact 

frequencies between genomic loci and the proteins they are decorated with [43], thereby 

creating structural patterns also in three dimensions. Elucidating the mechanistic basis of 

these phenomena and the functional relationships among them requires techniques that can 

identify, quantitate and compare different topologies along the genome. 

 

Global analysis of deep sequencing data by correlation functions 

Several methods for the analysis of genome-wide sequencing data sets have been 

developed (see Table S1 for a non-comprehensive list). Most of them analyze deep 

sequencing data on the level of individual genomic positions or bins to produce lists of 

enriched regions. Unfortunately, this procedure is complicated by noise, bias and 

undersampling [13-15], and it is not straightforward to choose a threshold value for 

classifying enriched regions because low values lead to false-positive peaks and high values 

lead to false-negative results. Consequently, identifying differences in the chromatin domain 

topology between samples is fraught with difficulties as evident from a comparison of 14 

different software tools for differential ChIP-seq analysis that yield different results [44]. 

These problems are especially detrimental for the analysis of broad regions with low 

enrichment levels that are common to heterochromatin. One popular approach to deduce 

information more robustly is the generation of aggregate plots around known genomic 

elements, such as transcription start or termination sites [45-47]. These plots sacrifice 

single-locus resolution in order to decrease the contribution of noise and bias and to 

increase statistical power. Such plots require a priori knowledge about the position of 

genomic elements to align with and are therefore of only limited applicability for the study of 

features that are not exclusively present in the vicinity of annotated genes (Fig. S19) or other 

known genomic elements. 

The MCORE method introduced here uses correlation functions to find and quantify 

chromatin patterns. It computes Pearson correlation coefficients as underlying metrics, 

which is a convenient measure that has extensively been used for data comparison and 

statistical inference in many fields including deep sequencing analysis [16, 26, 27, 48]. 

When calculating correlation functions, MCORE implicitly combines multiple genomic 

regions to gain a correlation coefficient for each shift distance, yielding statistical robustness 

from a large number of reads. In this manner MCORE can quickly retrieve information on the 

spatial distribution of chromatin features on all length scales, while avoiding assumptions or 

model-dependent parameter settings like significance thresholds (Fig. S1). In contrast to 
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aggregate plots MCORE does not rely on any a priori knowledge about annotated genomic 

elements. Compared to peak calling [13], MCORE has a relatively low sensitivity to 

undersampling. As illustrated in Fig. S6 and Fig. S7, domain sizes obtained from normalized 

correlation functions for the features tested here are unaffected by a reduction of the read 

number down to about 12 million reads. This might be beneficial for the analysis of data sets 

that have low complexity, e.g. due to limitations in input material as it is the case for low 

input sequencing samples, or insufficient sequencing depth, which seems to be the norm for 

broadly distributed histone modifications [13]. Domain abundances obtained from data sets 

with different coverage values exhibited somewhat larger changes than domain sizes (Fig. 

S7). Therefore, sufficient coverage should be ensured in order to interpret these parameters, 

e.g. by applying MCORE to diluted data as shown in Fig. S6 and Fig. S7. 

A crucial step in the MCORE workflow is correction for bias and background. Without this 

step artificially overrepresented regions and non-specific signal can induce similarities 

between data sets that are unrelated to the chromatin feature of interest. These phenomena 

are well known from other deep sequencing analysis methods. Because different artifacts 

affect the signal on different scales, their contribution and successful correction can better 

be assessed by multi-scale methods than by techniques that operate on a single scale. In 

particular, non-specific background leads to a characteristic correlation spectrum (Fig. S2B, 

Fig. S4), whose removal can and should be validated using the proper controls. Based on a 

single correlation coefficient between data sets this task is more difficult to accomplish. 

 

Genome-wide topology of chromatin domains 

MCORE extends previous techniques that assess co-localizations of chromatin features 

based on correlation coefficients. By evaluating entire correlation functions instead of single 

correlation coefficients the spatial extension of chromatin patterns on multiple genomic 

scales is retrieved. With this analysis we found predominantly small domain sizes of less 

than 2 kb for promoter/enhancer marks H3K4me1, H3K4me3, H3K27ac and RNAP II, 

intermediate domain sizes of 20-30 kb for H3K36me3 that marks the whole gene body 

including flanking regions, and domain sizes up to several megabases for 

H3K9me3/H3K27me3 (Fig. 3, Fig. S16, Tables S2-3). This is consistent with the size of 

promoters, enhancers and active genes, and with the estimates for repressive domains that 

were made based on visual inspection of selected genomic regions [49]. 

The scale-dependent relationships determined by MCORE for different histone modifications 

suggest that there are three types of domain topologies: (i) Short domains formed by 

activating marks are relatively homogenously modified, which is reflected by a large 

probability for finding the same or another activating modification at the next nucleosome. 
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Accordingly, correlation functions for activating marks such as H3K4me3 displayed only a 

moderate initial decay (Fig. 3), which is reflected by a low abundance of domains of the size 

of single nucleosomes (Tables S2-3). (ii) H3K36me3 formed domains of intermediate size 

that were roughly one order of magnitude broader than H3K4me3 domains. The stronger 

initial decay (Fig. 3) suggests the presence of short domains that are formed by single 

nucleosomes without an equally modified neighbor (Tables S2-3), which is consistent with 

the presence of more gaps in H3K36me3 domains as compared to H3K4me3 domains. (iii) 

Especially in NCs replicate correlation functions for H3K9me3 or H3K27me3 displayed long-

range correlations that extended to shift distances of several megabases. Similar scale-

dependence was also seen for correlation functions between H3K9me3 and H3K27me3 

(Fig. 4C), suggesting that these domains intermingle. The respective correlation functions 

displayed a relatively fast decay at a shift distance of one nucleosome (Fig. 3, Fig. 4, Tables 

S2-3), indicating that many modified nucleosomes localize next to a non-modified or 

differently modified one. 

The topology inferred here for H3K9me3/H3K27me3 domains (Fig. 7) fits well to the 

experimental observation of broad domains and low enrichment levels in the cell ensemble. 

In particular, the experimentally determined methylation levels that are below 50 % even for 

H3K9me3 in pericentric heterochromatin (see [20] and references therein) are incompatible 

with large stretches of adjacent fully H3K9me3-modified nucleosomes. The topology found 

here is consistent with a model in which methylation marks are stochastically propagated 

from well-positioned nucleation sites via dynamic chromatin looping [20]. 

 

Comparison of chromatin domains in ESCs versus NCs 

The comparative analysis of 11 different chromatin features in ESCs and NCs conducted 

here shows that MCORE can efficiently identify and compare chromatin domain patterns. By 

integrating genome-wide data sets with very different readouts MCORE is particularly suited 

to assess the interplay between spatial genomic architecture and epigenetic signaling and to 

generate hypotheses that can be further validated in downstream applications. 

The positive correlations we found among activating histone modifications (H3K4me1, 

H3K4me3, H3K27ac, H3K36me3), among repressive histone modifications (H3K9me3, 

H3K27me3, 5mC) and between H3K36me3 and repressive marks are in qualitative 

agreement with previous studies conducted with ESCs and other cell types [49-51]. 

Genome-wide co-localization of marks that were originally thought to affect transcription 

antagonistically might reflect the additional functions of these marks that are unrelated to the 

regulation of gene expression. For example, H3K9me3 is not restricted to heterochromatin 

but is also found at active genes [33, 52], H3K9me3, H3K27me3 and H3K36me3 have been 
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linked to alternative splicing [37, 53] and large portions of H3K9me3 and H3K27me3 localize 

to intergenic regions where they might serve completely different functions (Fig. S19, [50]). 

In addition, differences between a gene locus during different cell cycle stages, between 

alleles within the same cell, or between different cells in the ensemble can induce positive 

correlation between marks that do not co-localize on the same molecule, which is why 

conclusions drawn from sequencing data inherently refer to the average of the cell 

population that was analyzed. The finding that correlations among different marks are 

generally smaller in ESCs than in NCs fits to the model of plastic and ‘hyperactive’ chromatin 

in stem cells, which acquires distinct patterns only upon differentiation [54]. The fact that 

most 5mC regions persisted in ESCs and NCs (Fig. S16), were moderately depleted for 

inter-chromosomal contacts in both cell types (Fig. S18B), and gained H3K9me3 in NCs 

(Fig. S18A) suggests a model in which heterochromatic regions newly established in NCs 

are preferentially buried within chromosome territories (Fig. 7). H3K27me3 domains in both 

cell types also were found to adopt this configuration. This model fits very well to the 

previously reported localization of inactive domains inside chromosome territories in 

differentiated cells, including the H3K27me3-rich domains found in silenced Hox clusters 

[11, 55-57]. The observation that only a subset of H3K9me3 domains is broad and enriched 

for SUV39H1 suggests that heterochromatin extensions is not primarily caused by 

recruitment of trans-acting factors to preexisting H3K9me3 but rather by site-specific 

nucleation of SUV39H1 to domains that are to be extended during differentiation. 

 

Conclusions 

The MCORE method introduced here enables the quantitative retrieval and comparison of 

domain topologies and spatial relationships for different chromatin features from noisy data 

sets. These features make MCORE complementary to model-dependent approaches that 

assess the local read density at individual loci to find enriched regions. MCORE is relatively 

fast and yields a coarse-grained comparison of data sets that does not require user-defined 

input parameters, providing an unbiased starting point for in-depth analyses. We anticipate 

that this capability will prove to be valuable to cope with the deluge of genome-wide 

sequencing data sets arising from the analysis of small cell populations or even single cells 

both in the context of basic research and personalized medicine [4, 58]. 
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Materials and Methods 
Calculation of normalized occupancy profiles 

Sequencing reads were mapped to the mouse mm9 assembly using Bowtie [59]. Only 

uniquely mapping hits without mismatches were considered and duplicates were removed. 

Mapped reads were processed according to the following steps: Bisulfite sequencing (BS-

seq) data, which are used to map DNA methylation at single base pair resolution, are usually 

available as methylation scores calculated from the ratio of converted reads divided by the 

sum of converted and unconverted reads at a given position. These can be directly used for 

computing the correlation function as described below. For all other sequencing readouts the 

coverage was initially calculated for each chromosome by extending the reads to fragment 

length, yielding a histogram with the genomic coordinate on the x-axis and the number of 

reads per base pair on the y-axis. For Hi-C and ChIA-PET data only inter-chromosomal 

reads were considered. To calculate normalized occupancy profiles, samples were 

processed depending on the type of experiment. In general, it is important to account for 

fragmentation bias, library preparation bias and genome mappability. All these multiplicative 

biases are also included in the input sample and should cancel out in the ratio of specific 

signal A and input signal I ( ). In RNA-seq experiments the input signal can be replaced 

by a sample of nucleosome-free, fragmented genomic DNA. For immunoprecipitation 

experiments, it is additionally important to account for the non-specific binding during sample 

preparation to obtain meaningful correlation functions (Fig. S2A). This is of increasing 

importance for decreasing signal-to-background ratio (Fig. S2B). The appropriate control, 

read coverage C, can be obtained from an immunoprecipitation with a non-specifically 

binding antibody (e.g. IgG control) or from a sample that lacks the antigen of interest (e.g. a 

knockout cell line). Accordingly, we devised the following strategy to compute normalized 

occupancy profiles that were used in the subsequent analysis. First, the normalized 

coverage of the control Cnorm and of the specific immunoprecipitation sample Anorm were 

obtained by dividing by input signal according to Eq. 1: 

 and  (1) 

Here, …  denotes averaging along the genomic coordinate. For the calculation of coverage 

(  and ) and average values (  and ), positions with zero input 

coverage were neglected. Subsequently, the coverage at these positions was set to the 

respective average value (  or ) that was calculated for the remaining positions, 

which eliminates fluctuations and corresponding contributions to the correlation coefficient. 

A I

Cnorm = C I
C I

Anorm = A I
A I

C / I A / I C / I A / I

C / I A / I
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In the next step, non-specific background signal was removed to obtain the normalized read 

occupancy O:   

O = Anorm −b ⋅Cnorm  (2) 

In Eq. 2, the parameter b quantifies the contribution of the control signal present as 

background in the sample (IP). To estimate b, we minimized the absolute value of the 

Pearson correlation coefficient r0 at zero shift distance between the normalized occupancy O 

and the control coverage Cnorm according to Eq. 3: 

 (3) 

Here, n denotes the maximum genomic position considered for the calculation, which is 

typically the chromosome length. For the minimization procedure, b was changed between 0 

and 1. Because the minimum correlation r0(b) indicates the lowest similarity between 

normalized occupancy profile and control, the corresponding b value was used for 

normalization according to Eq. 2.  

 

Computation of correlation functions 

The Pearson correlation coefficient r at shift distance ∆x was calculated for the corrected 

data sets after shifting the two occupancy profiles with respect to each other by ∆x base 

pairs according to Eq. 4 (equivalent to Eq. 3 but with a second shifted occupancy instead of 

the control coverage): 

r(Δx) =

1
2

O1,i − O1( ) O2,i+Δx − O2( )+ O1,i+Δx − O1( ) O2,i − O2( )⎡
⎣

⎤
⎦

i=1

n−Δx

∑

O1,i − O1( )
2

i=1

n

∑ O2,i − O2( )
2

i=1

n

∑
 (4) 

To sample the correlation function in a quasi-logarithmic manner [60], profiles were binned 

by a factor of 2 after 25 shift operations, which doubles the step size. To preserve high 

resolution for small shift distances, the first binning operation was carried out at a shift of ∆x 

= 50 bp. This calculation was done for each chromosome separately because continuous 

domains cannot exceed chromosomal ends. Combinations of genomic positions beyond 

chromosome ends were neglected. Correlation functions for single chromosomes were 

averaged or compared to each other. In the manuscript, most correlation functions refer to 

chromosome 1, which is representative for all chromosomes as judged by the relatively 

r0 =
Oi − O( ) Cnorm,i − Cnorm( )

i=1

n

∑

Oi − O( )
i=1

n

∑
2

⋅ Cnorm,i − Cnorm( )
i=1

n

∑
2
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small deviations between chromosomes (Fig. 2B, Fig. 3A,B). However, correlation functions 

can also be calculated for smaller genomic regions (see Fig. S1 for the correlation function 

for a single domain). 

To compare cross-correlation functions between different features normalization to the 

geometric mean of the two replicate correlation functions was conducted: 

         (5) 

Here, rc is the cross-correlation coefficient at a given shift distance ∆x, and r1 and r2 are the 

replicate correlation coefficients of the data sets used. This normalization step accounts for 

differences in the distributions of the features involved. For calculating the cross-correlation 

functions between two different features or the same feature in two different cell types at 

least two replicates for each sample were used. Accordingly, a cross-correlation function for 

each combination was computed, which results in n2 functions for n replicates of each 

sample, and average and standard error were calculated based on all correlation functions.   

 

Statistical analysis of correlation functions 

Statistical analysis of data was conducted by computing standard errors and 95% 

confidence intervals. To assess significance and associated errors/confidence intervals for a 

given correlation function the following types of variations have to be considered. 

Statistical error of the computed correlation function. Because correlation functions are 

calculated from millions of regions they have a very small statistical error. The sample size N 

for each shift distance  is given by the distance between the first and last position that is 

covered on the chromosome (Pmin and Pmax) subtracted by the shift length (∆x) with 

𝑁 ∆𝑥 =  𝑃!"# − 𝑃!"# − ∆𝑥. Based on the sample size, 95% confidence intervals are 

obtained using the Fisher transformation [61, 62]. Because the shift distance is typically 

much smaller than the length of the chromosome for which the correlation coefficient is 

calculated, the sample size is very large and the error of the correlation coefficient is very 

small (Fig. 2A). As normalized occupancy values Oi typically follow a normal distribution 

reasonably well (Fig. 2D), the Fisher transformation is a good way to estimate confidence 

intervals for correlation coefficients. An alternative non-parametric option that is compatible 

with arbitrary sample distributions is bootstrapping [63]. To this end, occupancy profiles are 

resampled with replacement in pairs (O1,i, O2,i+∆x), which are subsequently used for 

calculation of the correlation coefficient according to Eq. 4. This procedure is repeated 

multiple times to obtain a distribution of correlation coefficients for every pair of resampled 

occupancy profiles (Fig. 2E) and every shift distance ∆x. Based on the width of this 

rnorm (∆ x) =
rc (∆ x)
r1(0) ⋅ r2 (0)

Δx
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distribution estimates for confidence intervals are obtained. For the cases tested here, 

bootstrapping yielded moderately larger confidence intervals than those obtained using 

Fisher transformation, but intervals from both methods were of the same order of magnitude 

(Fig. 2F). 

Variation between chromosomes. An estimate for the error of genome-wide domain 

structures or relationships can be obtained by comparing correlation functions calculated for 

different chromosomes as shown in Fig. 2B. If the relationship is governed by the same 

biological mechanism on all chromosomes this variation can be used to evaluate the error. 

Reproducibility of experiments. Sample preparation might introduce a global bias into a 

given data set. This is generally true for deep sequencing experiments irrespectively of 

which method is used for downstream analysis. Such variations between biological 

replicates might not be captured by statistical comparisons conducted on the basis of a 

single data set or a pair of data sets. The reproducibility of the experiment can be assessed 

with MCORE for data sets with at least three different biological replicates by computing the 

correlation function between all possible combinations of samples. For n replicates this 

yields n·(n-1)/2 correlation functions. For these groups the correlation coefficients at a given 

shift distance can be compared. We found this approach to be particularly useful to identify 

variations due to different experimental conditions. For example, we evaluated the changes 

of ChIP-seq results after using antibodies from different companies (Fig. 2C and Fig. S11). 

Comparison of two correlation functions. Correlation functions obtained by MCORE 

represent series of normalized Pearson correlation coefficients for different shifts ∆x 

between occupancy profiles. Amplitudes of correlation functions calculated between different 

features in one cell type reflect the co-localization of the respective features. Although 

correlation functions are calculated here for the whole chromosome, some data sets are 

restricted to a fraction of the genome due to their biological structure. For example, 

occupancy profiles from RNA-seq display distinct gaps because only a fraction of the 

genome is transcribed. Thus, correlation functions between features that cover the whole 

genome, such as ChIP-seq data for histone modifications, have a tendency to exhibit larger 

amplitudes than correlation functions involving discontinuous occupancy profiles, such as 

those from RNA-seq experiments. This has to be considered when comparing absolute 

correlation amplitudes and can be accounted for to some extent by the normalization 

according to Eq. 5. Because domain sizes and nucleosomal spacing can be obtained from 

the shape of the correlation function without considering the absolute correlation amplitude, 

such effects only influence conclusions about (anti-)co-localization. 

After correlation functions, associated errors and confidence intervals have been computed 

the comparison of two functions can be performed according to standard statistical tests for 
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which an R-script is included in the supplementary material. To assess if the difference 

between two independent correlation functions is statistically significant a t-test can be 

conducted for each shift distance ∆x individually, i.e. via pairwise comparison of correlation 

coefficients. Evaluating the statistical significance of a difference between two correlation 

coefficients r1 and r2 is done by Fisher transformation and testing of the null hypothesis r1 – r2 

= 0 (Fig. S9). To compare domain sizes or nucleosomal spacing between two correlation 

functions, the positions of inflection points (in logarithmic representation) or domain sizes 

obtained by the fit can be compared. Notably two correlation functions might be significantly 

different due to different amplitudes but encode the same domain size distribution, which is 

independent of amplitudes. 

An alternative non-parametric test to assess the difference between two series is the 

Kolmogorov-Smirnov test [64]. Correlation functions are considered as distributions of 

correlation coefficients, and the cumulative distribution is calculated. To assess the 

difference between two correlation functions, the supremum of the difference between both 

cumulative distributions is determined, which can readily be transformed into the 

corresponding significance [64]. Whereas this type of analysis is less sophisticated 

compared to pairwise comparison of correlation coefficients on all genomic scales 

individually, the Kolmogorov-Smirnov test is a convenient option to decide if curves are 

globally similar or different. Replicates can either be integrated into the analysis by 

comparing the suprema between different sets of correlation functions or by simply 

considering the average and standard error of cumulative distributions. 

 

Quantification of MCORE correlation functions 

Correlation functions obtained by MCORE provide information on the overall degree of 

(anti-)correlation between two deep sequencing data sets but also reflect the underlying 

chromatin domain structure with respect to (i) the number of chromatin domains, (ii) the 

relative domain abundance, (iii) the length of the respective domains, and (iv) the 

nucleosome repeat length. To extract the domain size distribution of a given chromatin 

feature, two different strategies are implemented in MCORE, which differ in the level of 

complexity but yield similar information. The first approach is independent of user-defined 

settings and computes parameters for the domain size distribution from the inflection points 

of the correlation function in logarithmic representation and a Gardner transformation of the 

correlation function. The Gardner transformation characterizes the decay spectrum of a 

function in a non-parametric manner [32]. This workflow represents a robust approach to 

evaluate genome-wide features from deep sequencing data without input parameters. In 

particular, inflection points are completely model-independent, whereas the Gardner 
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spectrum makes the generic assumption that the decay spectrum can be approximated by a 

superposition of exponential functions. The second approach can be used to quantitatively 

describe the domain size distribution based on a fit function. For this purpose it is crucial to 

avoid over-fitting of the data. Accordingly, we implemented a complementary set of four fit 

options that allow a robust in-depth analysis of correlation functions reporting fit parameters 

and their errors and thus determining domain sizes and their relative abundance. The 

performance of the different fit approaches is described below and in the MCORE software 

manual. The workflow we used in this manuscript is validated with simulated data in Fig. S8.  

Least-squares spectrum fit. The exponential decay spectrum for the correlation function is 

optimized by conventional non-linear least squares fitting. The amplitudes for a given 

number of (logarithmically spaced) domains are optimized to obtain a good fit. The goal of 

the spectrum fitting process is to determine the length scales that are present in the decay 

spectrum of the curve. To this end it is not always necessary to describe the shape of the 

correlation function perfectly. For example, the initial decay of the function is frequently too 

steep to be adequately fitted with a superposition of exponential functions. Nevertheless, 

decay lengths are typically obtained in a robust manner. The multi-exponential fit described 

below typically performs equally well in identifying length scales and provides a good 

description of the correlation function. Thus, the least-squares spectrum fit is only 

recommended if the multi-exponential fit does not converge properly, i.e., if it yields length 

scales that are very different from those determined by inflection points. 

Maximum entropy method (MEM) spectrum fit. The exponential decay spectrum is fitted 

similar to the least-squares method. However, the entropy of the amplitude spectrum is 

maximized along with the fit quality. To this end, optimization is carried out in a parameter 

space that is spanned by the first derivative of the entropy and the first and second 

derivatives of the fit quality according to the approach described previously [65]. This fit 

option is only recommended if the number of components obtained from the least-squares 

spectrum fit is much larger than the number of inflection points. 

Multi-exponential fit implemented in MCORE. For multi-exponential fitting the following 

equation consisting of a combination of exponential functions is used:  

 (6) 

The exponential terms describe the domain structure of the correlation function, with ai, bi 

and ni yielding the abundance, the half width and the fuzziness of the i-th domain, 

respectively. Small exponents ni correspond to long-tail decays in the domain size 

distribution. 

F(∆ x) = ai ⋅exp −∆ x
bi

⎛
⎝⎜

⎞
⎠⎟

ni

i
∑
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Multi-exponential fit in R. The multi-exponential fit implemented in R [66] (http://www.R-

project.org) uses a combination of exponential functions (see Eq. 6) multiplied with an 

additional oscillating term to describe the correlation function: 

 (7) 

The oscillating term accounts for the nucleosomal pattern, with parameters c1 for the 

strength of the nucleosomal oscillation, c2 representing the nucleosomal repeat length and c3 

the scale on which regular nucleosomal spacing is lost. When using this approach, the 

minimal number of exponential terms that yielded uncorrelated fit residuals was chosen. 

 

Peak calling 

Peak calling was done using MACS [8] and SICER [9] implemented in the Genomatix 

software suite version v3.20715 (Genomatix, Munich, Germany). Prior to peak calling reads 

were preprocessed as described above including mapping to the mouse mm9 assembly by 

Bowtie [59], considering only uniquely mapping hits without mismatches and removing 

duplicates. Peak calling was done using default parameters and the input as control file. For 

H3K36me3 MACS mfold level 5, 10 and 30 were tested, and mfold 5 was selected. For 

SICER the FDR threshold was set to 0.0001, a window size of 200 bp and a gap size of 600 

bp were used for H3K9me3 and H3K36me3, and a window size of 200 bp and a gap size of 

200 bp were used for H3K4me3. 

 

Network models 

Graphs for network models were created and plotted using Gephi (http://gephi.github.io). 

Nodes were manually prearranged, and their layout was optimized using the Fruchterman-

Reingold algorithm [67], which adjusts node positions based on forces that act between 

nodes according to the respective correlation strength. 

 

Sample preparation for histone ChIP-seq 

ESCs and neural progenitor cells from 129P2/Ola mice were cultured and differentiated as 

published [29]. ChIP-seq experiments and mapping of reads to the mm9 assembly of the 

mouse genome was conducted as described previously [20]. In brief, 106 cells were cross-

linked with 1% PFA and cell nuclei were prepared. Chromatin was sheared by sonication to 

mononucleosomal fragments. ChIP was carried out with antibodies (Abcam) against 

H3K4me1 (ab8895), H3K4me3 (ab8580), H3K9me3 (ab8898), H3K27ac (ab4729), 

F(∆ x) = c1 + (1− c1) ⋅cos
∆ x
c2

π
⎛
⎝⎜

⎞
⎠⎟
⋅exp −∆ x

c3

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞
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H3K27me3 (ab6002), H3K36me3 (ab9050) or an unspecific IgG from Acris (RA073 or 

PP500P). For further information see Table S4. Libraries were prepared according to 

Illumina standard protocols with external barcodes and were sequenced with 51 bp single-

end reads on an Illumina HiSeq 2000 system. After sequencing, cluster imaging and base 

calling were conducted with the Illumina pipeline (Illumina). 20 - 30 Mio reads were obtained 

for each sample. Reads were uniquely mapped without mismatches to the mm9 mouse 

genome using Bowtie. For RNA-seq, cells were harvested and long RNAs were isolated with 

the miRNeasy Mini Kit (Qiagen), DNA was digested by DNase I (Promega) for 30 min at 

37°C, and libraries were prepared using the Encore Complete RNA-Seq Library Systems 

(NuGEN). 

 

MCORE software 

An executable Java program, including a test data set and an R script for statistical testing of 

the difference between two correlation functions, is available in the supplemental material 

and can be downloaded at http://malone.bioquant.uni-heidelberg.de/software/mcore. 

 

Accession codes 

ChIP-seq data have been deposited to the GEO database under the accession number 

GSE61874. 
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Figure 1. MCORE can identify and compare patterns in deep sequencing data sets. 
(A) MCORE is suited for the analysis of deep sequencing data from various methods. 
Initially, mapped reads are used to compute occupancy profiles of two samples (black/blue). 
Subsequently, the profiles are normalized using the input sample and, if applicable, the 
control sample. In contrast to other methods like peak calling, hidden Markov models (HMM) 
or dynamic Bayesian networks (DBN), MCORE does not score enriched regions but rather 
shifts normalized occupancy profiles with respect to each other to compute correlation 
functions, which contain information about chromatin patterns as illustrated in panels B and 
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C and Fig. S1. To this end it uses all sequencing reads without filtering and avoids any 
assumptions about the enrichment pattern. (B) Correlation functions between biological 
replicates for the same chromatin feature contain information about its domain topology. 
Whereas the correlation coefficient at shift distance zero quantifies the reproducibility of the 
experiment, the shape of the function reflects the distribution of the feature along the 
genomic coordinate. Continuous domains lead to a steep decay at the shift distance that 
coincides with half the domain size (top), whereas broad domains containing small highly 
enriched regions yield multiple decay lengths (center). Arrays of equally spaced domains 
cause an oscillating contribution in the correlation function (bottom). Mixtures of domains 
with different topology yield a superposition of the respective correlation functions. (C) 
Correlation functions between two different chromatin features reflect their spatial 
relationship. Co-localizing features yield monotonously decaying functions (top) that 
resemble those between replicates discussed in the previous panel. Correlation functions for 
features that are shifted with respect to each other exhibit a local maximum at the shift 
distance (center). Mutually exclusive features are recognized by negative correlation 
amplitudes (bottom). Features that do not exhibit any spatial relationship with respect to 
each other yield no correlation for any shift distance. 
  

. CC-BY-NC-ND 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/054049doi: bioRxiv preprint first posted online May. 18, 2016; 

http://dx.doi.org/10.1101/054049
http://creativecommons.org/licenses/by-nc-nd/4.0/


 32 

 

Figure 2. Confidence intervals of correlation functions. Calculations shown here were 
conducted for H3K36me3 in ESCs for chromosome 1. Indicated confidence intervals 
refer to the 95% level. 
(A) Replicate correlation function (black) and its confidence interval (grey) obtained by 
MCORE based on the Fisher transformation (Materials and Methods). Due to the large 
sample size the confidence interval is smaller than 10-3 and within the line thickness. 
(B) Average (black) and confidence interval (grey) of correlation functions calculated for all 
autosomes (1-17) based on the data sets generated in this study. (C) Average (black) and 
confidence interval (grey) of three replicate correlation functions calculated from three 
independent biological replicates (rep1 x rep2, rep1 x rep3, rep2 x rep3), yielding information 
on the reproducibility of the experiment. The correlation function for ENCODE data for 
H3K36me3 in ESCs (red) is similar to the correlation function computed from the data sets 
generated in this study. The amplitude of the first domain that covers the length scale below 
200 bp shift distance is different. This might be due to incomplete correction of background 
signal in the ENCODE data set that lacks a control IP reference, which should, however, not 
strongly affect the quantitation of domain sizes beyond the scale of a nucleosome. The 
effect of this correction is illustrated in Fig. S2. (D) Distribution of normalized occupancy 
values (Oi – <O>) that were used for calculating the correlation function in panel A according 
to Eq. 4 (Materials and Methods). The distribution is relatively symmetric and unimodal. 
(E) Distribution of correlation coefficients obtained by bootstrapping for the correlation 
coefficient at zero shift distance. Each correlation coefficient was calculated after resampling 
the occupancy profiles with replacement as described in the Materials and Methods section. 
Correlation coefficients are given relative to the mean value. The 95% confidence interval 
obtained by this approach is roughly 3-times larger than the estimate based on Fisher 
transformation (shown in red). (F) Correlation function from panel A with non-parametric 
bootstrap confidence intervals for each shift distance. 
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Figure 3. Quantification of domain sizes for different histone marks. 
(A) Correlation functions for replicates in ESCs. Correlation functions calculated between 
replicates for chromosome 1 (black) and their fit functions (red) with characteristic domain 
sizes obtained from the fit (vertical dotted lines) are shown. Grey regions indicate maximum 
variation between chromosomes. Fit residuals are plotted above the correlation curves. 
Domain sizes and abundances calculated from the respective fit parameters are shown 
below the correlation curves. (B) Same as in panel A for NCs. (C) As shown in panels A and 
B, MCORE identified broad H3K9me3 domains spanning on average 128 kb and 7.6 Mb in 
NCs that were absent in ESCs. To annotate the genomic positions of these domains, read 
counts in a sliding window of 128 kb, which corresponded to the domain size calculated by 
MCORE, were evaluated. An example of a domain that became broader in NCs is shown 
(‘#1’ and ‘#2’ denote biological replicates). For clarity, the occupancy profiles were smoothed 
with 0.2-times the window size (‘smooth’). For window size 7.6 Mb see Fig. S14.  
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Figure 4. MCORE reveals genome-wide relationships between chromatin features. 
(A) Co-localization (top, red/blue) and separation distance (distance to the largest local 
maximum, bottom, green) between pairs of different features in ESCs (left) and NCs (right) 
are illustrated. Stars indicate correlation functions for which the local maximum is also the 
global maximum. Hi-C trans, Hi-C inter-chromosomal contacts; RNA, RNA-seq; RNAP II-
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ChIA, RNAP II ChIA-PET. (B) Correlation functions for replicates of H3K9me3, H3K27me3 
and inter-chromosomal contacts (Hi-C trans) in ESCs (blue) and NCs (black) show the 
spatial extension of these features. Average cross-correlation functions (red) between ESCs 
and NCs quantify the co-localization of a given feature across cell types. Averages were 
calculated from the four possible combinations of the two replicates for each sample 
(Materials and Methods). Error bars, s.e.m. (C) Cross-correlations between H3K9me3 and 
H3K27me3 (top) or H3K9me3/H3K27me3 and inter-chromosomal contact sites (Hi-C trans, 
center/bottom) in ESCs and NCs. Repressive domains co-localize in NCs (top) and have a 
tendency to be depleted for inter-chromosomal contacts (bottom). Error bars, s.e.m. 
(D) Cross-correlations between H3K4me3 and H3K27ac (top) indicate co-localization of both 
marks in rather small domains, whereas cross-correlations of H3K4me3 and H3K36me3 
(center) reveal a relative displacement of roughly 5 kb between the two marks. In NCs, there 
is an additional co-localization at zero shift distance that is weaker in ESCs. Cross-
correlations between H3K4me1 and H3K9me3 (bottom) show that both marks are stronger 
co-localized in NCs than in ESCs. The local maximum at 100 kb shift distance in ESCs 
suggests a separation of H3K4me1 from broad H3K9me3 domains. Error bars, s.e.m. 
(E) Peak calling in NCs as readout for co-localization. Red, peaks called by MACS for 
H3K4me3; blue, peaks called by SICER for H3K36me3 or by MACS for H3K27ac. The 
numbers of (overlapping) peaks are indicated. (F) Distribution of distances between called 
peaks. Distances were calculated from the center of the H3K4me3 peak to the center of the 
nearest peak in the second data set (H3K27ac or H3K36me3). 
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Figure 5. Network models for scale-dependent relationships among chromatin 
features. 
(A) Network models illustrating the relationships among different chromatin features in ESCs 
on different scales (blue: positive correlation, red: negative correlation). Features were 
grouped according to their correlation at zero shift distance (left), yielding a cluster of 
features associated with active transcription and a cluster of marks related to gene silencing, 
whereas H3K36me3 co-localizes with members of both groups. The correlations among 
features on adjacent nucleosomes (200 bp shift distance) differ from the correlations among 
features at the same nucleosome (0 bp shift distance), indicating that only some features 
form continuous domains that extend beyond a single nucleosome. For the even larger shift 
distance of roughly ten nucleosomes (2000 bp), only some long-range correlations remain, 
which either reflect large domains of co-localizing features or features that are shifted with 
respect to each other. The latter two possibilities can be distinguished based on the shape of 
the correlation function (Fig. 1C). (B) Same as in panel A but for NCs.  (C) Network models 
illustrating changing relationships among different chromatin features in ESCs and NCs. The 
difference NC-ESC is colored in blue if correlations became stronger in NCs and red if 
correlations became weaker in NCs. Positive correlations among repressive marks were 
stronger in NCs than in ESCs, particularly on larger scales. Further, inter-chromosomal 
contacts (Hi-C trans) were positively correlated with H3K9me3 in NCs but not in ESCs. 
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Figure 6. Interplay among H3K9me3, SUV39H1 and HP1. 
(A) Replicate correlation functions of HP1α (blue), HP1β (black) and H3K9me3 (green) in 
ESCs. (B) Cross correlation functions of HP1α (blue) or HP1β (black) with H3K9me3 in 
ESCs. (C) Cross correlation functions of HP1α (blue) or HP1β (black) with H3K36me3 in 
ESCs. (D) Same as in panel A but for NCs and including SUV39H1 (red). H3K9me3 and 
HP1α/β exhibit small, intermediate and (very) broad domains. The short domain size of one 
nucleosome is present in the correlation functions for all marks, suggesting that domains 
consist of nucleation sites and gaps (as explained in the text). SUV39H1 does not form 
intermediately sized domains. (E) Same as in panel B but for NCs and including SUV39H1 
(red). SUV39H1, HP1α, HP1β and H3K9me3 strongly co-localized.. Intermediate domains 
are not present in the cross correlation function between SUV39H1and H3K9me3, indicating 
that both features only co-localize in short and broad domains. In contrast, HP1α and HP1β 
essentially follow the H3K9me3 distribution, indicating that they do not distinguish between 
differently sized H3K9me3 domains. (F) Same as in panel C but for NCs. (G) Domain size 
distribution for correlation functions in panels D and E. (H) Schematic illustration of a 
nucleation-and-looping mechanism for the formation of SUV39H1-dependent H3K9me3 
domains, which is consistent with the MCORE result. 
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Figure 7. Alterations of chromatin features during differentiation of ESCs into NCs. 
Model for the re-organization of chromatin domains during differentiation from ESCs to NCs 
based on the MCORE analysis of the data sets used in this study. Active domains mostly 
retained their organization, with H3K4me1 being partly separated from the smaller 
H3K4me3/H3K27ac domains in both cell types. The overlap between those marks and 
H3K36me3 increased in NCs, which might be due to elevated transcription of enhancers or 
activation of genes enriched for H3K4me1/3 or H3K27ac. Domains enriched for H3K9me3 
and H3K27me3 became extended at sites of 5mC and were preferentially buried inside 
chromosome territories. At the same time, RNAP II re-located to the surface of the 
chromosome territory. The newly established H3K9me3/H3K27me3 domains were 
discontinuous, i.e. contained many modified nucleosomes without an equally modified 
neighbor. Further, they exhibited increased overlap with activating marks such as H3K4me1 
and H3K4me3, which suggests that they do not exclusively contain heterochromatin but 
rather enclose both active and repressive chromatin domains. 
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Figure S1 | Strategies to retrieve information about complex patterns. (A) Peak calling 
result for a complex domain topology involving different enrichment levels (MACS, standard 
settings mfold =10,30, pvalue = 1e-5). The pattern is reduced to regions that are compatible 
with the threshold and significance settings. Other regions are classified as background. 
There is no straightforward criterion to decide which threshold level should be used to 
separate biologically relevant enrichment from irrelevant background. (B) Correlation 
function (black dots) and multi-exponential fit according to Eq. 6 (red line) for the pattern in 
panel A. The correlation function yields the different length scales that are present in the 
pattern, including the width of highly enriched regions, the characteristic size of clusters 
formed by adjacent peaks, and the size of the entire enriched region. No criterion is required 
to decide which structures are biologically relevant and which are ignored. 
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Figure S2 | Correction of background and multiplicative biases. (A) Fragmentation of 
total chromatin (black) containing a chromatin feature of interest (red) occurs with some bias 
and is frequently incomplete. As a result, only a fraction of chromatin (blue) is present in the 
input sample due to size selection during library preparation. Subsequent 
immunoprecipitation occurs in the presence of non-specific binding. The latter contribution 
can be assessed in a separate control reaction, e.g. by using an antibody that does not bind 
specifically to the antigen. Sequencing reads obtained from samples with the specific 
antibody A, the control C and the input I are used to calculate normalized occupancy profiles 
for the analysis of a given chromatin feature according to Eqs. 1-3. In brief, the coverage 
from the specific IP and from the control are divided by the input coverage (A / I and C / I, 
see Eq. 1) to account for multiplicative biases such as mappability or preferences in 
immunoprecipitation, ligation, amplification and sequencing. Next, the weighted control 
signal is subtracted from the specific antibody signal to remove additive bias caused by non-
specific binding (Eqs. 2-3). Resulting profiles are used for calculating correlation functions 
(Eq. 4). (B) Correlation functions for the uncorrected (black) and corrected (blue) 
occupancies for control IP (IgG, top), H3K4me3 (center) and H3K9me3 (bottom) ChIP-seq 
replicates in neural progenitor cells. Subtraction of the weighted control IP signal removes 
the background correlation and thus eliminates correlation between control IP signals (top). 
Normalization has little effect for H3K4me3, which displays distinct peaks with considerable 
enrichment (Fig. S5). In contrast, it induces a significant correction for H3K9me3, which 
forms broad domains with moderate enrichment levels.  
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Figure S3 | Statistical properties of representative occupancy profiles. Box plots (left), 
histograms (center) and percentiles (right) for normalized occupancy profiles from 
H3K4me3, H3K9me3 and H3K36me3 ChIP-seq experiments. For box plots, the median is 
colored in red and the ends of the whiskers represent the 1st and 99th percentile. Minimum 
and maximum occupancy values are listed in the histograms. Maximum occupancies 
depend strongly on the feature of interest but only moderately on the cell type. The 
background comprises a large part of the data and its distribution is similar for all profiles 
(see box plots and histograms). (A) ESCs. (B) NCs.  
 

. CC-BY-NC-ND 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/054049doi: bioRxiv preprint first posted online May. 18, 2016; 

http://dx.doi.org/10.1101/054049
http://creativecommons.org/licenses/by-nc-nd/4.0/


S5 

 
 

 
 
Figure S4 | Comparison between Pearson and Spearman correlation functions. 
Pearson (top, green) and Spearman (bottom, green) correlation functions for representative 
occupancy profiles in ESCs. To assess the contribution of enriched regions to the different 
correlation functions we replaced occupancy values above the 90th (blue) or 99th (black) 
percentile with the average occupancy within the rest of the genome. Spearman correlation 
functions exhibited only slight changes upon removal of highly enriched regions and 
primarily reflected the structure of the background signal that was independent of the 
immunoprecipitated histone mark (compare bottom left, center and right). In contrast, 
Pearson correlation functions reflected the properties of enriched regions, which carry the 
biological information, and changed their shape when these regions were omitted from the 
analysis. After removal of enriched regions (top, blue), Pearson correlation functions were 
dominated by the background signal and resembled Spearman correlation functions 
(bottom). The stronger background signal in Spearman correlation functions is due to the 
correction procedure that minimizes the background according to the Pearson metric (Eq. 3). 
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Figure S5 | Peak calling for representative data sets. (A) Read distribution (black) for 
sample, control (IP with a non-specific antibody) and input, normalized occupancy (red/blue), 
and peaks (green) called by MACS (M) and SICER (S) for H3K4me3, H3K9me3 and 
H3K36me3 ChIP-seq in NCs. Distinct H3K4me3 domains were reliably identified by both 
peak callers, results for H3K9me3 and H3K36me3 depended on the specific algorithm used 
(e.g. MACS and SICER). (B) Peak size distributions for clusters called by MACS and SICER 
for the ChIP-seq experiments in ESCs and NCs. Cluster sizes differ between both methods. 
(C) Example of the read distribution (black) and normalized occupancy (red/blue) for 
H3K36me3 ChIP-seq in NCs, including input and control. The highlighted region contains an 
apparent enrichment in H3K36me3 that is identified as a peak. However, similar enrichment 
is present in the control IP, suggesting that the signal corresponds to non-specific 
background. For such regions, peak calling methods that lack the possibility to 
simultaneously correct for biases with both an input sample and a non-specific IP give rise to 
false-positive peaks. 
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Figure S6 | Robustness of correlation functions towards undersampling. (A) Replicate 
correlation functions for ChIP-seq data sets of H3K4me3 in ESCs containing different 
numbers of reads are shown. The red curve corresponds to the entire set of reads reported 
in this study (100%, corresponding to 30 million reads). The other functions reflect data sets 
that were diluted in silico by randomly selecting only a fraction of reads from the entire set. 
Correlation functions were normalized to the 100% curve at a shift distance of one 
nucleosome (according to the fit parameters c2 in Table S2) because correlation coefficients 
for smaller shift distances do not contain information about domain structures (see Fig. S7 
for domain sizes obtained by fitting). (B) Same as in panel A but for H3K9me3. (C) Same as 
in panel A but for H3K36me3. (D) Quantification of the similarity of correlation functions for 
diluted data sets with respect to the undiluted curve based on the coefficient of 
determination (R2). Correlation functions for diluted data sets are similar to each other and to 
the result for the undiluted data set, with R2 > 0.9. Above 40% read density, which 
corresponds to 12 million reads, a plateau is reached for all modifications assessed here.  
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Figure S7 | Dependence of fit results on coverage. The correlation curves plotted in Fig. 
S6 were fitted with Eq. 6. Fit results for the domain sizes and the respective amplitudes are 
plotted versus coverage (domain numbers are indicated in the top panel). Grey regions 
show the variation of the fit results for dilution down to 50% of the reads. The most abundant 
domains, which represent the characteristic domain sizes for a given modification, were 
accurately quantified from diluted functions (top panels). Only lowly abundant large domains 
like the largest domain for H3K4me3 or H3K9me3 with abundance below 10% (see Table 
S2 for values) changed their apparent size when coverage was reduced. Due to their low 
abundance we did not include them in our discussion. 
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Figure S8 | MCORE for simulated data sets. (A) Correlation functions (dotted lines) for 
randomly distributed fragments of different size exhibit a single decay length that can be 
retrieved by assessing inflection points (arrowheads), by fitting the model function in Eq. 7 
(solid lines) or by evaluating the decay spectrum obtained from the Gardner transformation 
shown below the curves. (B) Fit parameters obtained for the curves shown in panel A yield 
half domain sizes (green), whereas the positions of inflection points correspond to 0.7-times 
the domain sizes (black). (C) Correlation functions (dotted lines) for nucleosomal arrays 
(instead of continuous fragments as in panel A) display global decay lengths that correspond 
to array sizes. The decay lengths coincide with the largest inflection points depicted by the 
arrowheads. In addition, correlation functions exhibit an oscillatory contribution due to the 
nucleosomal pattern within the arrays. The nucleosome repeat length of 200 bp used for the 
simulation was retrieved by fitting with Eq. 7 (solid lines). (D) The array size in panel C is 
either obtained from the analysis of inflection points (black), the peaks of the decay 
spectrum or the fitted half domain sizes (green), with the same scaling found for continuous 
domains in panel B.   
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Figure S9 | Statistical comparison of correlation functions. Based on 95% confidence 
intervals, the statistical significance of differences between correlation functions can be 
assessed. A p-value for the difference of two functions can be obtained using a t-test for the 
correlation coefficient pair at each shift distance and the corresponding confidence intervals 
(Materials and Methods). Typically, the statistical error of the correlation function is very 
small due to the large number of genomic regions considered for the calculation of the 
correlation coefficient (Materials and Methods). The red dashed lines indicate a p-value of 
0.05. (A) p-value for the difference between correlation coefficients at each shift distance are 
given for the replicate correlations of H3K9me3 in ESCs versus NCs. Correlation curves are 
shown in Fig. 4B (top, black/blue). (B) Same as panel A for H3K27me3. Correlation 
functions are shown in Fig. 4B (center, black/blue). 
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Figure S10 | MCORE for different H3K27ac data sets. (A) Correlation functions for 
H3K27ac data sets from this manuscript (Molitor et al. data) and from the study of Creyghton 
et al. [1]. Both data sets yielded similar results in the MCORE analysis. (B) Enrichment at the 
enhancers identified by Creyghton et al. was found for all data sets assessed here. (C) The 
enhancers identified by Creyghton et al. were not the only genomic regions enriched for 
H3K27ac. According to the MCORE results, these additional regions did not change their 
H3K27ac signature during development and dominated the global genome-wide distribution 
of the modification. 
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Figure S11 | Quality control of ChIP-seq data. (A) Replicate correlation functions from 
three ChIP-seq experiments of H3K36me3 in ESCs for all pairwise combinations, replicate 1 
and 2 (black), replicate 1 and 3 (red), replicate 2 and 3 (blue). The correlation functions 
show variations that reflect the biological reproducibility of the experiment. (B) Evaluation of 
two different antibodies used for ChIP-seq of H3K9ac in ESCs. Two ChIP-seq experiments 
were conducted with polyclonal antibodies from abcam (ab4441, replicate ab1 and ab2) or 
Active Motif (#39137, replicates am1 and am2). Replicate correlation functions of 
experiments with the same antibody showed significant correlation (ab1 and ab2, red line; 
am1 and am2 black line) with a difference in the amplitude that indicates a higher similarity 
and thus a better reproducibility of ChIP-experiments conducted with the Abcam antibody. 
Cross-correlation functions calculated for data sets using different antibodies (blue curves 
for every combination of two replicates, ab1 x am1, ab1 x am2, ab2 x am1, ab2 x am2) 
yielded negative correlations. Thus, the two antibodies recognize different chromatin 
features and further validation is necessary to make conclusions on the H3K9ac distribution. 
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Figure S12 | Fitted correlation functions for H3K27me3. Correlation functions calculated 
between replicates on chromosome 1 (black) and fit functions according to Eq. 7 (red) with 
half domain sizes obtained from the fit (vertical dotted lines). Grey regions indicate maximum 
variation between chromosomes. Fit residuals for the correlation functions are shown below 
the curves. Fit parameters are summarized in Tables S3 and S4. 
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Figure S13 | Peak calling summary for H3K9me3. MACS and SICER were used to 
identify peaks of H3K9me3 in NCs. Parameters were used as indicated in the Material and 
Methods section. Numbers of peaks with different sizes are given. 100% refers to all of the 
peaks identified by MACS (3630 peaks containing 0.4% of all mapped reads) or SICER 
(35780 peaks containing 9.45% of all mapped reads). 
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Figure S14 | MCORE-directed annotation of chromatin features. MCORE identified 
broad H3K9me3 domains spanning on average 128 kb and 7.6 Mb in NCs that were absent 
in ESCs, suggesting broadening of H3K9me3 domains during differentiation of ESCs into 
NCs (Fig. 3A, B, Tables S3-4). (A) To identify broad regions enriched for H3K9me3 in NCs 
but to a lesser extent in ESCs, the coverage difference for normalized occupancy profiles in 
ESCs and NCs was calculated in a sliding window of 128 kb in size. A histogram for the 
obtained values is shown. The histogram is relatively symmetric and centered at zero, 
indicating that most genomic regions are not differentially modified with H3K9me3 in ESCs 
or NCs. The tails (blue rectangles) show that the largest coverage differences are found in 
regions that gain H3K9me3 in NCs. (B) The coverage difference along chromosome 1 (left, 
maximum and minimum values within 10 kb bins are plotted) and a zoom-in of the genomic 
region in Fig. 3C (88.7 - 89.3 Mb, right) are shown. (C) To annotate the genomic positions of 
broad H3K9me3 domains, reads were counted and evaluated in a sliding window with the 
respective size. An example of a domain with ~7.6 Mb that became broader in NCs is 
shown. For clarity the occupancy profiles were smoothed with 0.2-times the window size. An 
example for window size 128 kb is shown in Fig. 3C. 
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Figure S15 | MCORE for transcription factor binding. Co-localization of transcription 
factors with different histone modifications was studied in ESCs. Cross-correlation functions 
of TAF3, Oct4 or Otx2 vs. H3K4me3, H3K9me3, H3K27ac and H3K36me3 are shown. 
Binding of TAF3 strongly correlates with H3K4me3 and H3K27ac, which mark active 
promoters and enhancers in mouse ESCs [1, 2]. The binding of TAF3 to enhancers is in line 
with publications showing that active enhancers are transcribed by the RNA Polymerase II 
machinery [3] and that TAF3 mediates chromatin-looping events that regulate transcriptional 
activation [4]. Oct4 and Otx2 are two transcription factors that regulate pluripotency and 
differentiation. Their binding correlates with H3K27ac in agreement with previous reports [5]. 
The peaks in the correlation curves reflect the ~300 bp distance between the binding site of 
the transcription factor and the modified nucleosome, which was also found recently [6]. For 
each of the three transcription factors maximum correlation with H3K36me3 was found at 
shift distances around 10 kb, which is similar to the average gene length and indicates that 
these factors globally bind adjacent to active genes. TAF3, Oct4 and Otx2 binding is 
uncorrelated with H3K9me3, which is consistent with their role in active transcription.  
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Figure S16 | Spatial extension and co-localization of different features in ESCs versus 
NCs. Correlation functions for replicates of H3K4me1, H3K4me3, H3K27ac, H3K36me3 and 
RNA Polymerase II (RNAP II) ChIP-seq, RNA-seq (RNA) and RNAP II ChIA-PET data 
(RNAP II-ChIA) in ESCs (blue) and NCs (black) reflect the domain topologies of the 
respective features. Cross-correlation functions (red) between the same feature in ESCs and 
NCs quantify the co-localization of the feature in both cell types. Most features depicted here 
do not drastically change their global distribution during differentiation because cross- and 
replicate correlation functions are similar to each other. 
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Figure S17 | Heterochromatin reorganization during differentiation. Cross correlation 
functions between H3K27me3 and H3K4me1/H3K36me3 in ESCs (blue) or NCs (black) are 
shown. H3K27me3 exhibited increased co-localization with activating marks in NCs. Error 
bars indicate s.e.m. among replicates. 
  

. CC-BY-NC-ND 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/054049doi: bioRxiv preprint first posted online May. 18, 2016; 

http://dx.doi.org/10.1101/054049
http://creativecommons.org/licenses/by-nc-nd/4.0/


S19 

 
 
Figure S18 | DNA methylation and inter-chromosomal contacts. (A) Cross correlation 
functions for DNA methylation and different histone modifications in ESCs (left) and NCs 
(right) are shown. Error bars indicate s.e.m. among replicates. (B) Cross-correlation 
functions for inter-chromosomal contact sites (Hi-C trans) and DNA methylation (5mC), RNA 
Polymerase II (RNAP II) and RNAP II ChIA-PET (RNAP II-ChIA) in ESCs (left) and NCs 
(right) are shown. RNAP II and RNAP II contact sites became moderately enriched at the 
surface of the chromosome territory in NCs, whereas 5mC tended to localize inside 
chromosome territories in both cell types. 
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Figure S19 | Fraction of chromatin features within and near genes. For each chromatin 
feature the fraction of signal within or near genes (gene-proximal region, between 5 kb 
upstream of the transcription start site and 5 kb downstream of the transcription termination 
site) was calculated from normalized occupancy profiles for chromosome 1. In contrast to 
the RNA signal that exhibits strong preference for genes, histone modifications typically 
associated with active genes like H3K36me3 were also located distant from genes. The 
yellow dashed line marks equal partitioning between gene-distal and gene-proximal regions 
because the latter one spans 43% of the uniquely mappable portion of chromosome 1. 
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Correlation 

function 
Sliding win-

dow binning a 
Peak a 
calling 

Multi-scale 
representation 

Probabilistic 
network 
models 

Deconvolved 
correlation 

Strand-speci-
fic correlation 

Tool(s) MCORE cisGenome, 
SiSSRs, SPP MACS, SICER MSR ChromHMM, 

Segway Arpeggio SPP 

Platform Java various Python Matlab script or 
compiler runtime  

Java, 
Python  

Java R-script 

Sequencing 
data type Unrestricted Unrestricted ChIP-seq Unrestricted Unrestricted ChIP-seq ChIP-seq 

Mixed data 
type analysis 
implemented 

Yes No No No b Yes No No 

Applications 
Quality control, 
domain features, 
spatial relations 

Local feature 
enrichment 

Local feature 
enrichment 

Multi-scale 
feature 
enrichment 

Segmentation 
into feature 
states  

Comparison of 
data sets, local 
structure 

Quality control 
for sequencing 
data 

Correction c Input and/or 
control Input or control Input or control 

Mappability, GC 
content, input or 
control 

Input or control Input or control None 

Detected 
feature scale 

1 bp –  
1 chromosome 

1 bp –  
1 chromosome 

< 10 kb (MACS) 
variable (SICER) 

1 bp –  
1 chromosome 

1 bp –  
1 chromosome 40 bp – 8 kb Fixed window 

size 

Information 
on shifted 
relationships 

Yes No No Limited b No No No 

Required 
input 
parameters  

None Window size 

MACS: p-value 
threshold, tag 
length/shift 
SICER: size of 
gap & window, 
FDR 

Resolution, scale 
number, p-value 
threshold 

State number, p-
value threshold None None 

Number of 
data sets 2 1 1 1 b >1 1 1 

Noise 
sensitivity  Low d Low High d n.d. n.d. Low Low 
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Genome locus 
annotation No Yes Yes Yes Yes No Yes 

Output e 

Domain sizes, 
nucleosome 
spacing, spatial 
relationships, 
normalized 
occupancy 

Enrichment over 
average Local enrichment Scale dependent 

enrichment 

Length 
distribution, 
abundance of 
chromatin states 

Feature profile, 
nucleosome 
spacing 

Peak separation 
distance 

Operating 
system f All All All Unix, Windows 

All (ChromHMM) 
Linux (Segway) 

Unix, Mac OS X All 

Comment 
Low sensitivity to 
noise, bias and 
undersampling 

Read counting in 
a window of 
predefined size  

Restricted scale-
range 

Can be applied 
as a peak caller 
with pruning. 

Predefined 
number and type 
of states. 

Removes large-
scale structures 
by filtering 

Recommended 
analysis prior to 
peak calling 

Reference This study [10-12] [13-15] [16] [17-20] [21] [10, 22] 

 

Table S1 | Comparison of MCORE with other software tools 

The table represents a non-comprehensive list of representative tools that are used to extract information about chromatin features from deep 

sequencing data sets. 
a Exemplary tools are mentioned. For other programs see compilations in ref. [7, 8]. 
b MSR can be applied to identify region of simultaneous enrichments for two different ChIP-seq data sets by computing a matrix of segments, but this 

analysis is not part of the current implementation. In some cases differential correlation of the matrix indicates the presence of shifted correlations. 
c Control reactions depend on the type of sequencing data and could involve for example a ChIP-seq reaction without the specific antibody.  

d See ref. [9] for peak calling and Fig. S3 for MCORE 
e The “enrichment” analysis of a given feature would also provide the information about its depletion with respect to a given average signal. 
f All operating systems refers to Unix, Windows and Mac OS X. 
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ESC H3K4me3 H3K9me3 H3K27me3 H3K36me3 

number 
of 

domains 

3 4 5 3 

value SE value SE value SE value SE 
a1 (%) 18.0 0.5 27.6 0.6 25.3 1.2 26.9 <0.5 
a2 (%) 75.7 0.6 46.4 2.4 20.0 4.3 51.4 3.0 
a3 (%) 6.3 0.3 21.0 3.0 23.3 6.0 21.7 1.8 
a4 (%) - - 5.0 3.9 22.1 3.5 - - 
a5 (%) - - - - 9.3 8.3 - - 
b1 (bp) 132 2 107 2 106 3 119 2 
b2 (bp) 926 6 1586 18 3198 173 14803 296 
b3 (kb) 33 6 11 2 16 2 356 105 
b4 (kb) - - 1121 704 322 46 - - 
b5 (kb) - - - - 4481 195 - - 
c1 (%) 99 fixed 98 <0.05 69 1 97 1 
c2 (bp) 173 fixed 182 9 207 5 182 5 
c3 (bp) 1000 fixed 654 340 219 9 802 303 
n1 1.97 0.05 2.20 0.10 3.31 0.27 2.30 0.50 
n2 1.25 0.01 1.11 0.00 1.96 0.25 0.62 0.01 
n3 0.38 0.02 0.64 0.10 1.28 0.33 0.45 0.04 
n4 - - 0.39 0.10 0.79 0.17 - - 
n5 - - - - 3.96 0.97 - - 
 
Table S2 | Fit parameters for selected correlation functions in ESCs. Correlation 
functions calculated for replicates of H3K4me3, H3K9me3, H3K27me3 and H3K36me3 (Fig. 
3A, Fig. S12) were fitted with Eq. 7 (Materials and Methods), yielding the indicated fit 
parameters and corresponding standard errors (SE). The minimum number of domains 
required to yield uncorrelated fit residuals was chosen. The amplitudes a1-a5 represent the 
relative domain abundance, the decay length parameters b1-b5 represent half of the 
respective domain sizes, and the value of c2 reflects nucleosome spacing. See text and 
Materials and Methods for further details. 
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NC H3K4me3 H3K9me3 H3K27me3 H3K36me3 

number 
of 

domains 

3 4 4 3 

value SE value SE value SE value SE 

a1 (%) 18.2 1.5 47.5 3.1 54.7 1.2 25.7 0.4 
a2 (%) 79.9 1.5 23.2 3.6 11.5 1.9 57.3 0.9 
a3 (%) 1.9 1.9 17.7 2.9 17.5 2.4 17.0 0.9 
a4 (%) - - 11.6 5.5 16.3 3.2 - - 
b1 (bp) 243 4 202 19 111 2 111 1 
b2 (bp) 985 14 2036 142 1791 91 11848 287 
b3 (kb) 617 106 64 13 48 9 1412 85 
b4 (kb) - - 3771 256 3132 131 - - 
c1 (%) 98 <0.5 74 4 82 2 99 <0.5 
c2 (bp) 134 3 175 4 218 15 182 6 
c3 (bp) 3017 3017a 367 41 224 27 11505 11505a 
n1 2.01 0.12 2.31 0.60 2.67 0.09 2.47 0.07 
n2 1.43 0.03 1.11 0.15 1.54 0.24 0.59 0.01 
n3 0.53 0.07 0.62 0.13 0.52 0.09 0.79 0.05 
n4 - - 1.56 0.24 1.64 0.15 - - 
 
Table S3 | Fit parameters for selected correlation functions in NCs. Correlation 
functions calculated for replicates of H3K4me3, H3K9me3, H3K27me3 and H3K36me3 (Fig. 
3B and Fig. S12) were fitted with Eq. 7, yielding the indicated fit parameters and 
corresponding standard errors (SE) as described in the Materials and Methods section and 
the legend to Table S2.  
 
a Fit error truncated since it exceeded the allowed parameter range 
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target cell type accession 
replicate1 

accession 
replicate2 reference 

Input ESC GSM1516068 GSM1516069 This study 
Input ESC SRX499123 SRX499124 [5] 
IgG ESC GSM1516070  GSM1516071 This study (RA073) 
IgG ESC GSM1516072 GSM1516073 This study (PP500P) 
IgG ESC SRR331056 SRR331057 [4] 
5mC ESC  SRX080191  [23] 
H3K27ac ESC GSM1516076 GSM1516077 This study (ab4729) 
H3K27me3 ESC GSM1516074 GSM1516075 This study (ab6002)) 
H3K36me3 ESC GSM1516082 GSM1516083 This study (ab9050) 
H3K4me1 ESC GSM1516080  GSM1516081 This study (ab8895) 
H3K4me3 ESC GSM1516086 GSM1516087 This study (ab8580) 
H3K9me3 ESC GSM1516084 GSM1516085 This study (ab8898) 
Hi-C ESC SRX116341 SRX116342 [24] 
Input ESC SRR317225 SRR317226 ENCODE 
Oct4 ESC SRX499114 SRX499115 [5] 
Otx2 ESC SRX499116 SRX499117 [5] 

RNA ESC GSM1516088 
GSM1516089 

GSM1516090 
GSM1516091 This study 

RNAP II ESC SRR489721 SRR489722 ENCODE 
RNAP II-ChIA ESC SRX243706 SRX243707  [25] 
TAF3 ESC SRR331054 SRR331055 [4] 
Input NPC SRX604258 SRX604259 [26] 
IgG NPC GSM1516092 GSM1516093 This study (RA073) 
5mC NPC SRX080193-5  [23] 
H3K27ac NPC GSM1516096 GSM1516097 This study (ab4729) 
H3K27me3 NPC GSM1516094 GSM1516095 This study (ab6002)) 
H3K36me3 NPC SRX604262 SRX604263 [26] 
H3K4me1 NPC GSM1516100 GSM1516101 This study (ab8895) 
H3K4me3 NPC GSM1516102 GSM1516103 This study (ab8580) 
H3K9me3 NPC SRX604260 SRX604261 [26] 
Hi-C Cortex SRX128219 SRX128220 [24] 
Input Brain E14.5 SRR489727 SRR578284 ENCODE 

RNA NPC GSM1516104 
GSM1516105 

GSM1516106 
GSM1516107 This study 

RNAP II Brain E14.5 SRR578272 SRR578273 ENCODE 
RNAP II-ChIA NPC SRX243710  [25] 
     
 
Table S4 | Summary of data sets used in this study. 
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