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Oncogene aberrations drive 
medulloblastoma progression, not initiation
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Despite recent advances in understanding disease biology, treatment of group 3/4 
medulloblastoma remains a therapeutic challenge in paediatric neuro-oncology1. 
Bulk-omics approaches have identified considerable intertumoural heterogeneity in 
group 3/4 medulloblastoma, including the presence of clear single-gene oncogenic 
drivers in only a subset of cases, whereas in most cases, large-scale copy number 
aberrations prevail2,3. However, intratumoural heterogeneity, the role of oncogene 
aberrations, and broad copy number variation in tumour evolution and treatment 
resistance remain poorly understood. To dissect this interplay, we used single-cell 
technologies (single-nucleus RNA sequencing (snRNA-seq), single-nucleus assay for 
transposase-accessible chromatin with high-throughput sequencing (snATAC-seq) 
and spatial transcriptomics) on a cohort of group 3/4 medulloblastoma with known 
alterations in the oncogenes MYC, MYCN and PRDM6. We show that large-scale 
chromosomal aberrations are early tumour-initiating events, whereas the single-gene 
oncogenic events arise late and are typically subclonal, but MYC can become clonal upon 
disease progression to drive further tumour development and therapy resistance. 
Spatial transcriptomics shows that the subclones are mostly interspersed across 
tumour tissue, but clear segregation is also present. Using a population genetics model, 
we estimate medulloblastoma initiation in the cerebellar unipolar brush cell lineage 
starting from the first gestational trimester. Our findings demonstrate how single-cell 
technologies can be applied for early detection and diagnosis of this fatal disease.

Intratumoural heterogeneity, a hallmark of cancer, refers to the pres-
ence of diverse molecular and functional cell populations within a 
single tumour4. Intratumoural heterogeneity is driven by genetic 
mutations, transcriptomic or epigenomic plasticity and reprogram-
ming of the microenvironment5. The malignant childhood tumour 
medulloblastoma is heterogeneous2, especially in groups 3 and 4. This 
heterogeneity makes effective treatment of these tumours difficult and 
contributes to overall low survival rates6. Advanced DNA methylation 
profiling has classified group 3/4 tumours into eight distinct molecu-
lar subgroups7. In addition, single-cell transcriptomic profiling has 
unveiled the intricate regulatory activity of transcription factors and 
signalling pathways that orchestrate cellular diversity8,9. Despite these 
advances, the role of oncogenes in shaping intratumour heterogeneity 
remains unknown.

A minority of group 3/4 medulloblastoma tumours harbour single- 
gene oncogenic drivers, including MYC10 and MYCN11 amplifications  

as well as PRDM6 overexpression owing to enhancer hijacking by means 
of a tandem duplication of the adjacent SNCAIP gene2. By contrast, 
most group 3/4 tumours display recurrent, large-scale copy number 
changes2,12,13, including loss of chromosomes 8 and 11 and gain of chro-
mosome 7 and isochromosome 17q. A fundamental question of which 
genetic events initiate and drive these tumours remains unanswered. 
Using single-cell multi-omics and spatial transcriptomic approaches, 
we determined the interplay between large-scale copy number variants 
(CNVs) and single-gene somatic events in driving medulloblastoma 
heterogeneity and evolution.

Driver oncogenic events are subclonal
To understand the clonal genetic events in tumour initiation, evolution 
and progression, we molecularly profiled a specific tumour cohort with 
a known amplification of MYCN or MYC or overexpression of PRDM6 
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(n = 16 primary, n = 4 relapses; Fig. 1a and Supplementary Table 1). 
In larger datasets, amplification or activation of these oncogenes is 
present in approximately 30% of group 3/4 medulloblastoma cases2, 
whereas approximately 70% of cases lack a single-gene somatic event. 
The presence of focal MYC/MYCN amplifications or the SNCAIP tandem 
duplication was verified using bulk molecular profiles or fluorescence 
in situ hybridization (FISH) for each sample in this cohort (Supple-
mentary Table 1). We analysed single-nucleus profiles of our target 
cohort, examining both snRNA-seq (n = 20) and snATAC-seq (n = 16) 
in the same nuclei.

Uniform manifold approximation and projection (UMAP) visualiza-
tion of the snRNA-seq data from primary tumours showed group 3/4 
subgroup-specific clusters without batch effect adjustments (Fig. 1b); 

mixed normal cell types arising from different samples clustered 
together as expected (Extended Data Fig. 1a). Expression of the onco-
genes MYC, MYCN and PRDM6 demonstrated clear sample specificity 
(Fig. 1c–e and Extended Data Fig. 1b). In addition, expression of known 
marker genes delineated non-tumour cell types, including PTPRC 
(microglia), IGFBP7 (meningeal) and AQP4 (astroglia) (Extended Data 
Fig. 1c–e). Non-tumour cell clusters were also verified from CNV pro-
filing of the full combined snRNA-seq dataset (Extended Data Fig. 1f). 
This separation of structure was recapitulated with snATAC-seq, as 
visualized by means of UMAP (Extended Data Fig. 1g,h). For samples 
with multi-omics data, non-tumour cells in snATAC-seq were labelled on 
the basis of their associated non-tumour clusters from the snRNA-seq 
data (Extended Data Fig. 1g).
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Fig. 1 | Single-nucleus transcriptional profiling of 16 oncogene-associated 
group 3/4 medulloblastoma primary tumour samples. a, Overview of target 
cohort with annotation. Two primary-relapse pairs (MB272/R, INF_P/R_637)  
are from the same patients. b, UMAP of snRNA-seq merged dataset, with 

medulloblastoma subgroups annotated. c–e, Feature plots showing MYC (c), 
MYCN (d) and PRDM6 (e) expression within the UMAP of the merged snRNA-seq 
dataset. G3, group 3; G4, group 4; G34, group 3/4 medulloblastoma; F, female; 
M, male.



Nature | www.nature.com | 3

To investigate the clonal heterogeneity of MYCN-amplified tumour 
samples (subgroups V/VII), we adapted the inferCNV14 approach 
(Methods) to infer CNV profiles of cell clusters per sample, using both 
snRNA-seq and snATAC-seq data. To verify the single-cell CNV calls, 
we calculated the correlation between pseudobulk from single-cell 
and bulk DNA methylation CNV profiles (Supplementary Table 1) 
across all cases, as shown in Extended Data Fig. 2a–c. A full cohort 
cross-comparison demonstrated that most of the snRNA-seq pseu-
dobulk CNV profiles matched well, with the exception of n = 3 false 
positive cases (Extended Data Fig. 2d). CNV profiles from snATAC-seq 
data showed the highest correlation to the correct control bulk profile 
for all samples (Extended Data Fig. 2e), demonstrating the benefit of 
using this data type for CNV calling.

From inspection of the CNV results per sample, in most cases, 
we observed clusters with discordant CNVs, which we labelled as 
subclones. For example, in all MYCN-amplified tumours (n = 4), we 
identified two distinct subclones: with (C1) and without (C2) MYCN 
amplification, respectively (Fig. 2a and Extended Data Fig. 3a). Notably, 
in all cases, reconstruction of the putative phylogenetic trees showed 
that MYCN amplification was not the initiating event for the tumour. 
Instead, large-scale CNVs, such as loss of chromosomes 8 and 10 or 
gain of chromosome 7 or 17q, were already present in the presumptive 
founder clone (C0) (Fig. 2b). Moreover, further unique CNVs were found 
only within MYCN- and non-MYCN-amplified subclones. Detailed visu-
alizations of single-cell CNV profiles per sample are available through 
the interactive online web application (Methods).

Next, we examined the differentiation, proliferation and aggressive 
progenitor-like activity states of individual cells within each subclone 
using snRNA-seq expression of established reference gene lists for 
these defined medulloblastoma cell states8. We identified that both 
MYCN-amplified and non-amplified subclones maintained separate 
proliferating and differentiated compartments (Fig. 2c,d and Extended 
Data Fig. 3b,c). The MYCN subclone was also uniquely enriched with 
a progenitor-like gene expression signature (Fig. 2e). As cells differ-
entiated, the oncogene itself showed lower expression within the 
MYCN-amplified subclone (Pearson correlation = −0.23, P < 2.2 × 10−16; 
Extended Data Fig. 3d), demonstrating that MYCN is connected to the 
undifferentiated state15. Similar differentiation levels among subclones 
and a slight bias towards progenitor activity in MYCN-amplified sub-
clones were observed in all four MYCN-amplified tumours (Extended 
Data Fig. 3e).

By inspecting differentially expressed genes specific for each sub-
clone (Supplementary Table 2), we also identified a unique property of 
non-MYCN subclones with a stronger enrichment of genes expressed 
in unipolar brush cell progenitors (P < 1.14 × 10−6), the cell of origin of 
group 3/4 medulloblastoma16,17, whereas MYCN subclone-associated 
genes were not enriched in these genes (P > 0.05). This observation 
was also confirmed using subclone-specific genes associated with 
cis-regulatory elements derived from the integration of snATAC-seq 
data (Supplementary Table 3).

Performing single-cell CNV analyses on MYC-amplified tumour sam-
ples (subgroups II/V), we identified a subclonal MYC amplification 
in six of seven samples (Fig. 2f and Extended Data Fig. 3f). Similar to 
MYCN-amplified tumours, the common and likely initiating events 
in the founder clone (C0) were large-scale chromosome 10 loss and/
or chromosome 17q gain, with subclonal MYC amplification occur-
ring later during tumour evolution. Remarkably, the clonal structure 
of MYC-amplified tumours was more complex (n = 3 of 7 cases), with 
the formation of three or more unique subclones (Fig. 2f, bottom). 
Typically, MYC-amplified subclones had their own proliferating and 
differentiating compartments (Fig. 2g,h and Extended Data Fig. 3g,h). 
Similar to the MYCN-amplified clones, only MYC-amplified clones 
demonstrated strong enrichment of progenitor-like activity com-
pared with non-MYC-amplified compartments (Fig. 2i). Differentially 
expressed genes specific to MYC-amplified subclones were enriched 

in known MYC target genes18 (P < 1.11 × 10−16; Supplementary Table 2) 
and MYC expression decreased as cells differentiated (Pearson correla-
tion = −0.18, P < 2.2 × 10−16; Extended Data Fig. 3i), whereas expressed 
genes in non-MYC subclones demonstrated enrichment in unipolar 
brush cell-related genes (P < 1.54 × 10−11; Supplementary Table 2). The 
MYC subclone-specific genes were not found to be enriched in any 
corresponding subclone-specific CNVs. Across six samples with sub-
clonal MYC amplifications, the differentiation level was similar among 
subclones; however, progenitor-like activity was significantly enriched 
in MYC-amplified subclones (Extended Data Fig. 3j).

Last, we examined tumours with enhanced PRDM6 expression (sub-
groups VII/VIII), in which SNCAIP gene duplication leads to aberrant 
activation of PRDM6 by means of enhancer hijacking2. In our cohort, 
we identified three of five samples in which PRDM6 overexpression was 
subclonal (Fig. 2j and Extended Data Fig. 4a). Chromosome 17q gain 
was the most frequent CNV within the founder clone (C0). In contrast 
to MYC and MYCN clones, we could not identify a distinct proliferating 
compartment in PRDM6-specific clones (Fig. 2k,l). Instead, we found 
only an overall small proportion of cells (less than 5%) with the prolif-
eration gene signature in PRDM6 subclones (Extended Data Fig. 4b). 
We also did not identify enriched progenitor-like activity in the PRDM6 
subclones (Fig. 2m and Extended Data Fig. 4c), except in one specific 
case in which we detected an MYCN-amplified subclone that addition-
ally harboured an SNCAIP duplication with associated PRDM6 overex-
pression (Fig. 2b, bottom right).

To further verify the presence of subclones, we performed single-cell 
whole-genome DNA and RNA sequencing from the same cells, in a  
subset of MYCN- and MYC-amplified cases, n = 6 (Supplementary 
Table 1). In all tested samples, the presence of the corresponding spe-
cific subclones and their CNV profile matched between the snMulti-
omic data (combined snRNA-seq and snATAC-seq data from the same 
cell), on the basis of single-cell RNA projection (Extended Data Fig. 5a) 
and whole-genome sequencing (WGS) CNV analysis (Extended Data 
Fig. 5b–h).

Despite the low mutational burden in medulloblastoma2, we also 
inspected the somatic single-nucleotide variants (SNVs) to confirm 
the tumour phylogeny composition predicted by snRNA-seq and 
snATAC-seq data. Using WGS data, we examined mutations in CNV 
regions specific to the founder clone (C0) or not lying within CNVs. 
In 9 of 12 samples, we did not identify the presence of drivers or 
co-mutations (exceptions: two MYC-amplified cases, Fig. 2f, and one 
PRDM6 case, Fig. 2j). We further investigated the mutational landscape 
at the single-cell level by increasing the sequencing coverage of the 
snATAC-seq data in three MYC-amplified cases. This approach allowed 
us to recover up to 40% (range, 20% to 60%) of somatic mutations per 
sample (Supplementary Table 4). The positive correlation (maximum 
P value: 7.4 × 10−6) of their variant allele frequency (VAF) and the cor-
responding bulk WGS profiles verified the accuracy of the approach 
(Extended Data Fig. 4d–f). Importantly, in all three cases, it was pos-
sible to identify unique somatic mutations specific for the respective 
subclone, further supporting a common origin of these clones and 
secondary subclonal evolution (Extended Data Fig. 4g–i). Moreover, 
by comparing the extended somatic SNVs identified in the snATAC data 
with germline SNVs (see the Methods for details), the subclone-specific 
SNVs were observed to have approximately four times lower mean VAF 
in comparison with those SNVs that are common among subclones 
(Extended Data Fig. 4j–l).

Collectively, these findings nominate large-scale CNVs as likely 
tumour-initiating events in group 3/4 medulloblastoma, with focal 
oncogene aberrations occurring only during tumour evolution.

Tumour onset from first trimester onwards
To investigate clonal dynamics during the initiation of group 3/4 
medulloblastomas, we analysed WGS data from the medulloblastoma 
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International Cancer Genome Consortium (ICGC) cohort2 (Supple-
mentary Table 5). Somatic tissues accumulate SNVs continuously over 
time19–21, and hence SNV density in the tumour cell of origin (in popula-
tion genetics, ‘most recent common ancestor’ (MRCA)) can be inter-
preted as a measure for the patient’s age at tumour initiation22,23. To time 
the developmental origin of medulloblastoma with this approach, we 
quantified clonal SNV densities from the allele frequency distribution 
of somatic variants in 181 primary medulloblastomas of all subgroups 
(Extended Data Fig. 6a,b; comprising 108 group 3/4 medulloblastomas, 
21 infant Sonic Hedgehog (SHH)-medulloblastomas, 35 childhood/
adulthood SHH-medulloblastomas and 17 WNT-medulloblastomas). 
Overall, the clonal SNV densities across subgroups recapitu-
lated the age-incidence distribution of the disease, with infant 
SHH-medulloblastoma having the lowest densities (0.02 ± 0.01 
SNVs per megabase (Mb)), followed by group 3/4 medulloblastoma 
(0.1 ± 0.08 SNVs per Mb), WNT-medulloblastoma (0.28 ± 0.47 SNVs 
per Mb) and adult SHH-medulloblastoma (0.41 ± 0.46 SNVs per Mb; 
Extended Data Fig. 6c). Clonal SNV densities were also correlated with 
age at diagnosis (Spearman’s ρ = 0.73, P < 2.2 × 10−16; Extended Data 
Fig. 6d), collectively supporting our approach to infer the evolutionary 
dynamics at medulloblastoma onset from somatic SNVs.

To estimate age of tumour initiation in group 3/4 medulloblasto-
mas, we analysed 109 tumour samples of this subgroup in more detail 
(Fig. 3a). As with the entire cohort, clonal SNV densities were likewise 
correlated with the age at diagnosis among group 3/4 medulloblastoma 
(Spearman’s ρ = 0.51, P = 3.959 × 10−8; Extended Data Fig. 6e). However, 
contrary to the clear temporal order in tumour initiation of the major 
medulloblastoma groups, clonal SNV densities were statistically indis-
tinguishable between group 3/4 medulloblastoma subgroups I–VIII 
(Wilcoxon rank sum test, all adjusted P values > 0.05), indicating that 
growth of the final tumour mass begins around the same developmental 
time window in all group 3/4 medulloblastoma subgroups (Fig. 3b).

To refine our analysis, we timed the acquisition of clonal CNVs 
(copy number gains or loss of heterozygosity (LOH)) relative to the 
tumour’s MRCA. To this end, we compared densities of clonal SNVs 
acquired before a chromosomal gain, and hence present on multiple 
copies of a chromosomal region, with the density of clonal SNVs overall 
(Methods). Similar to neuroblastoma23 and other tumour entities22, 
34 of 109 group 3/4 medulloblastomas showed evidence of having 
acquired at least one copy number gain in an early common ancestor 
(ECA), antecedent to the tumour’s MRCA (Fig. 3c,d). The number of 
such early CNVs varied between 1 and 16 per tumour (mean, 5.3), with 
no significant difference in SNV density between early CNVs within a 
tumour (Extended Data Fig. 6f). Hence, in tumours with early CNVs, 
all early CNVs probably arose in an ECA during a confined time window 
before the onset of tumour growth. In the remaining cases, where we 
identified no early CNVs, clonal chromosomal gains probably occurred 
concomitantly with, or shortly before, the onset of tumour growth. To 
corroborate these observations, we contrasted our approach23 with 
an alternative computational tool, MutationTimeR22, which yielded 
similar results (Extended Data Fig. 6g). Hence, our data suggest that 

at least some CNVs in group 3/4 medulloblastoma arise before the 
onset of tumour growth, in line with multiple rounds of mutation and 
selection at tumour initiation.

To date these events in actual time, we calibrated a population genet-
ics model of mutation and selection during tumour initiation23 with the 
measured SNV densities at ECA and MRCA, along with the patient age 
at diagnosis (see the Methods for details). Briefly, the model assumes 
that medulloblastoma initiation is driven by clonal selection for two 
consecutive drivers in the transient cell population of (differentiating) 
unipolar brush progenitor cells from the rhombic lip16,17,24 (Extended 
Data Fig. 6h). Acquisition of the first driver defines a pre-malignant 
state, arising before a tumour’s MRCA. Although in principle the first 
driver can be any type of mutation, small driver mutations are overall 
rare in group 3/4 medulloblastoma2, and thus are probably not the 
major driving force of early tumour evolution. Hence, we focused on 
cases in which early CNVs defined an ECA, and associated the time 
point at which the first driver mutation was acquired with the muta-
tion density in the ECA. We assumed that the second driver emerges 
subsequently in the pre-malignant clone, spawned by the ECA. Hence, 
we associated the mutation density in the MRCA with the acquisition 
of the second driver and the onset of tumour growth. Finally, upon 
malignant transformation of the tumour’s MRCA, we assumed expo-
nential growth to a tumour size of 109 cells (corresponding to a few 
cubic centimetres) at the age of diagnosis25 (see Methods for details).

Using the bespoke model, we estimated driver mutation rates and 
associated selective advantages from the clonal SNV densities at ECA 
and MRCA measured across group 3/4 medulloblastomas. Simultane-
ously, we estimated per-tumour doubling times using age and the sub-
clonal VAFs of 35 tumours with sufficient data quality and information 
on age at diagnosis (Supplementary Table 5). Consistent with a higher 
activity of S-phase genes and MYC target genes and poorer overall 
survival26 (Extended Data Fig. 6i–k), we estimated shorter tumour dou-
bling times in medulloblastomas at the group 3 pole as compared with 
tumours at the group 4 pole (Extended Data Fig. 6j), confirming our 
modelling approach. We then used the per-tumour doubling times 
to translate SNV densities at ECA and MRCA into real-time, finding 
that the first oncogenic event (that is, the ECA) occurs within the first 
gestational trimester in 24% of cases, during late gestation in around 
35% of cases and within the first year of life in 26% of cases (Fig. 3e and 
Extended Data Fig. 6l). The onset of tumour growth from its MRCA is 
placed considerably later, within the first decade of life (Fig. 3f), sug-
gesting a long latency phase between pre-malignancy and the detection 
of a symptomatic tumour. Overall, the inferred dynamics of tumour 
initiation are consistent with a tumour origin in (differentiating) uni-
polar brush progenitor cells24,27, sustaining a pre-malignant clone that 
outlives the cell state of origin for several years (Fig. 3g).

Early acquisition of large-scale CNVs
To gain mechanistic insight into group 3/4 medulloblastoma initiation, 
we asked whether particular mutations occur predominantly early 

Fig. 2 | Clonal proliferation and differentiation gradients are independent 
of oncogene expression. a, Copy numbers derived from snATAC-seq data in 
MYCN-amplified sample MB183. Red, chromosome loss. Green, chromosome 
gain. Right side, inset of MYCN chromosome region. b, Somatic phylogeny 
trees for MYCN samples. Blue, proportion of MYCN-expressing cells. c, 
snRNA-seq UMAP of single MYCN sample MB183. Grey boxes, proliferating cell 
clusters with strong proliferation enrichment. Blue, C1 clone. Orange, C2 clone. 
d, MYCN expression in C1 and C2 clones. e, Per cell gene set variance analysis 
(GSVA) enrichments of proliferation, progenitor-like activity and 
differentiation in single sample shown in c. f, Somatic phylogeny trees for MYC 
samples. Red, proportion of MYC-expressing cells. Red square, cases MB292 
and MB248 with somatic mutations in C0. g, snRNA-seq UMAP of single MYC 

sample MB89. Grey boxes, proliferating cell clusters with strong proliferation 
enrichment. Red, MYC-expressing C2 clone. Orange, C1 clone. Aquamarine, C3 
clone. h, MYC expression in C1, C2 and C3 clones. i, Per cell GSVA enrichments of 
proliferation, progenitor-like activity and differentiation in single sample 
shown in g. j, Somatic phylogeny trees for PRDM6 samples. Purple, proportion 
of PRDM6-expressing cells. Red square, case MB249 with somatic mutations 
outside CNV regions. k, snRNA-seq UMAP of single PRDM6 sample MB249. Grey 
box, proliferating cell cluster with strong proliferation enrichment. Purple, 
PRDM6-expressing C2 clone. Orange, C1 clone. Aquamarine, differentiation 
signal enrichment in C3 clone. l, PRDM6 expression in C1, C2 and C3 clones. m, 
Per cell GSVA enrichments of proliferation, progenitor-like activity and 
differentiation in single sample shown in k.
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or late. To address this question, we first focused on CNVs that were 
found more frequently than expected by chance, and hence are likely 
drivers of malignancy. Combining the enrichment results obtained in 
our cohort (Extended Data Fig. 7a and Methods) with published data28, 
we classified gains of chromosomes 1q, 4, 7, 12, 17/17q and 18, as well as 
LOH on chromosomes 5q, 8, 10/10q, 11 and 17p, as putative drivers of 
group 3/4 medulloblastoma initiation. Except for four cases, in which 
no ECA was identifiable, all group 3/4 medulloblastomas harboured at 
least one of these CNVs clonally (Fig. 3h). To search for putative drivers 
located on these regions, we analysed the expression of genes lying 
in commonly gained or lost regions. For this purpose, we contrasted 
gene expression between tumours with and without particular CNVs 
in a bulk RNA-seq cohort of group 3/4 medulloblastoma3 (Supplemen-
tary Table 6a) and inspected differentially expressed genes specific 
for group 3/4 medulloblastoma in a global central nervous system 
tumour cohort24 (Supplementary Table 6b). Among these identified 
genes, up to 10% have been described as known somatic drivers, and 
thus associated with medulloblastoma evolution29.

Overall, gains of chromosome 17 or 17q were the most frequent 
aberrations in group 3/4 medulloblastoma, followed by gain of whole 
chromosome 7 and LOH of whole chromosome 8. The SNV densities 
at chromosomal gains were often smaller than the SNV densities at the 
tumour’s MRCA, in particular for gains of chromosomes 4, 7, 12 and 17 
and LOH of chromosomes 8 and 11 (Extended Data Fig. 7b). Although we 
cannot rule out that small mutations or chromosomal losses preceded 
these gains, their consistent early timing suggests that chromosomal 
gains or losses might be among the earliest events during group 3/4 
medulloblastoma initiation. In contrast to the high abundance of CNVs, 
focal events in known driver genes (SNVs, indels, focal amplifications/
deletions or structural rearrangement) were overall rare (Fig. 3h). 
Among these, amplification of MYC or MYCN and duplication of SNCAIP 
leading to PRDM6 overexpression were the most frequent alterations 
(Fig. 3h). However, the single-cell analysis (compare with Fig. 2b,f,j) 
showed that these mutations were mostly subclonal. Interestingly, 
group 3/4 medulloblastomas with amplification of MYC or MYCN or 
duplicated SNCAIP had significantly higher SNV densities at both ECA 
(Fig. 3i) and MRCA (Fig. 3j) than the remaining tumours, suggesting 
that later onset of (pre-)malignancy may predispose to the subsequent 
acquisition of these drivers. In general, the mutational landscape in 
group 3/4 medulloblastoma suggests a fundamental role of CNVs dur-
ing tumour initiation, although further mutations acquired during 
disease progression seem to drive subclonal evolution in a subset of 
tumours only.

Subclonal spatial heterogeneity
To better understand the spatial relationship of the tumour subclones 
and disclose further insight into their evolution, we performed spatial 
transcriptomics on samples with available material (n = 13 primary, 
n = 4 relapse). We used technology that applies multiplexed in situ 

hybridization of a selected gene set to achieve single-cell spatial res-
olution of a tumour sample (Supplementary Tables 7 and 8). UMAP 
visualization of merged spatial data from primary tumour samples 
reflected combined snMultiomic profiling, allowing us to distinguish 
subgroup-specific properties and identify non-tumour cell types 
(Extended Data Fig. 8a–e). The spatial locations of tumour cells were 
determined by the expression of MYC, MYCN and PRDM6 (Fig. 4a), along 
with other genes associated with proliferation (for example, MKI67; 
Extended Data Fig. 8f). The tumour microenvironment, including glial, 
immune and meningeal cells, was characterized using cell type-specific 
markers (Extended Data Fig. 8f).

To determine the spatial distribution of the identified subclones, 
we projected the snRNA-seq data onto the spatial data (Fig. 4a, last 
row). Overall, we distinguished two major spatial localization patterns: 
interspersed, in which independent subclones mixed throughout the 
tumour sample, and segregated, in which a clear boundary between 
independent subclones could be delineated. In most cases, the sub-
clones were interspersed, as observed from the spatial distribution 
of the corresponding marker gene expression.

In MYCN-amplified tumours, the observed clonal architecture derived 
from snRNA-seq data was also present in the spatial data (Fig. 4b). The 
subclones exhibited an interspersed spatial pattern (Fig. 4c), with pock-
ets of MYCN and non-MYCN clones highlighted through neighbourhood 
enrichment within the tumour sample (Fig. 4c, inset). The proliferating 
compartments within these subclones were also interspersed across 
the tumour tissue, observed by MKI67 expression (Fig. 4e and Extended 
Data Fig. 8f). On a smaller scale, however, neighbourhood enrichment 
analysis showed that proliferating cells of subclones clustered together, 
away from the differentiating cells (Fig. 4d). The normal cells were 
mostly isolated from the tumour subcompartments.

A similarly interspersed spatial pattern of MYC and non-MYC sub-
clones was present in MYC-amplified tumours (Fig. 4f,g), yet islands 
of segregated non-MYC subclones were also observed (Fig. 4g, inset). 
Proliferating cells (MKI67+) were interspersed throughout the tumour 
tissue (Fig. 4i and Extended Data Fig. 8f). The differentiated tumour 
cell compartment within the MYC subclone (C1-diff) was in closer 
proximity to the proliferating cell compartment within the same sub-
clone (C1-prolif; Fig. 4h). Normal cells were largely isolated from the 
MYC-amplified subclone compartments.

We observed a segregated spatial separation of subclones in the 
PRDM6 sample (Fig. 4j,k,m). This spatial segregation of clones was 
confirmed in another region of the same tumour specimen (Extended 
Data Fig. 8g,h). Although the subclones were segregated, the proliferat-
ing cell compartments within the subclones were interspersed within 
the spatial block (Fig. 4n and Extended Data Fig. 8i). As expected, the 
neighbourhood enrichment analysis in this sample showed the separa-
tion of the PRDM6 clone from other compartments (Fig. 4i). In another 
sample we also confirmed the dual-oncogene, the PRDM6-MYCN sub-
clone (Fig. 2b, bottom right), in which cells with activity in both genes 
reside in the same spatial regions (Extended Data Fig. 8j,k).

Fig. 3 | Somatic mutation profiles and association with cell of origin. a, 
Group 3/4 medulloblastoma subgroups analysed by bulk WGS. b, SNV densities 
at MRCA per group 3/4 medulloblastoma subgroup (I, n = 3; II, n = 15; III, n = 10; 
IV, n = 6; V, n = 12; VI, n = 12; VII, n = 19; VIII, n = 31). Shown are mean and 95% CI 
(estimated by bootstrapping the genomic segments 1,000 times). c, Early 
medulloblastoma evolution. Driver mutation in an ECA spawns a pre-malignant 
lesion. Malignant transformation occurs upon further drivers in the tumour’s 
MRCA. d, SNV densities at ECA and MRCA for group 3/4 medulloblastoma 
(n = 108). Mean and 95% CI, estimated by bootstrapping the genomic segments 
1,000 times. e, Model fit to SNV densities at ECA. Line, mean and standard 
deviation (estimated by bootstrapping the genomic segments 1,000 times)  
of the measured SNV densities; green and grey areas, 95% credible interval of  
the model fit, and of key time points. f, As in e, but for SNV densities at MRCA.  

g, 95% credible intervals of modelled tissue of origin (blue) and pre-malignant 
clone (green). Grey areas as in f. h, Mutation spectrum with timing information 
(‘ECA’, CNV uniquely timed to ECA; ‘MRCA’, CNV uniquely timed to MRCA;  
‘ECA or MRCA’, CNV in agreement with both ECA and MRCA; ‘clonal’, CNV/ 
small mutation was clonal, no further mapping to ECA/MRCA possible; 
‘subclonal’, CNV/small mutation was subclonal; ND, no data). Subclonality 
information for amplification of MYC/MYCN and duplication of SNCAIP from 
single-cell data. i, SNV density at ECA in group 3/4 medulloblastoma with and 
without driver in MYC/MYCN/PRDM6. P value, unpaired Wilcoxon rank sum test 
(n = 80 without, n = 28 with driver). j, As in i, but for SNV density at MRCA. 95% CI, 
95% confidence interval; scRNA-seq, single-cell RNA-seq; SSNV, somatic 
single-nucleotide variants.
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Together, the observed spatial patterns suggest that clonal evolu-
tion does not lead to spatial compartmentalization within tumours. 
Instead, cellular migration may dictate communication among the 
clones, which can then drive competing or collaborative interactions 
among the co-existing tumour populations.

MYC subclones take over at relapse
We identified a primary tumour sample with two distinct subclones 
(MB272), harbouring MYC (C3) and MYCN (C2) amplifications simul-
taneously (Figs. 2f and 5a–c). This subgroup II sample was originally 
characterized as MYC-amplified only on the basis of bulk methyla-
tion profiling (Extended Data Fig. 9a), whereas the MYCN-amplified 
subclones were observed in the single-cell multiome and spatial tran-
scriptomics analysis. This discrepancy most probably results from 
examining different fragments of the tumour tissue for each analysis. 
The MYC and MYCN subclones in this tumour sample had proliferating 
and differentiating compartments (Fig. 5b,c). The MYC subclone was 
strongly enriched with progenitor-like activity (Extended Data Fig. 9b). 
Remarkably, a clear spatial separation was observed between MYC- and 
MYCN-expressing cells (Fig. 5d and Extended Data Fig. 9c,d). This spatial 
segregation (Fig. 5e,f) reflected the phylogenetic tree of tumour evolu-
tion projected from the snRNA-seq CNV annotation (Fig. 2f). Further 
sets of subclone-specific genes also showed explicit spatial specific-
ity (Extended Data Fig. 9e,f). As expected, low contact proximity was 
identified between MYC and MYCN subclones (Extended Data Fig. 9g).

According to current knowledge, MYC and MYCN amplifications are 
considered mutually exclusive events30 in medulloblastoma (Extended 
Data Fig. 9h) and other tumour types31. Because of the unexpected 
occurrence of both amplifications in this case, we conducted a sys-
tematic analysis across a larger medulloblastoma cohort to identify 
further cases in which these oncogenes may co-occur. We identi-
fied six putative cases on the basis of DNA methylation CNV profiles 
(Extended Data Fig. 9i). Using immunohistochemistry, we identified 
another case in which both MYC and MYCN staining were seen in the 
same tumour sample (Extended Data Fig. 6j). During the preparation 
of this manuscript, a case study reported a primary tumour sample in 
which both MYC- and MYCN-amplified cells were present32. Together, 
these independent cases suggest the possibility that MYC and MYCN 
amplifications co-occur within the same tumour more frequently than 
originally thought. Nevertheless, it is noteworthy that individual cells 
within the tumour express only one of these oncogenes and are spa-
tially segregated.

The presence of MYC and MYCN subclones cannot be distinguished 
using bulk profile techniques owing to the potential low presence of 
cells of a particular subclone in the obtained data. Therefore, we gen-
erated unique signatures of MYC and MYCN subclones derived from 
single-cell data to identify further samples harbouring two oncogene 
amplifications. We performed a deconvolution analysis of bulk tran-
scriptome profiles, using the MYC/MYCN case as the reference control. 
Using this method, we detected further samples in which MYC and 
MYCN subclones may co-occur in the same sample (Extended Data 
Fig. 9k). We validated this finding using FISH on an identified sample 
with available material (Extended Data Fig. 6l).

We next checked whether this information could be exploited for 
diagnostic purposes. Therefore, we investigated whether the relative 

presence of MYC or MYCN subclones derived from the deconvolution 
analysis predicted patient outcomes. In subgroup V, 4 of 41 cases har-
boured a known MYC amplification, on the basis of CNV profiles, and 
correlated with a low probability of survival (Extended Data Fig. 9m). 
We identified 14 potential cases with an occurrence of an MYC-amplified 
subclone on the basis of deconvolution. These patients had a lower 
overall survival (Extended Data Fig. 9n). Therefore, the poor outcomes 
of subgroup V patients may be explained by an undiagnosed MYC sub-
clone that potentially outcompetes other subclones to drive relapse.

To further test this possibility, we performed single-nucleus molecu-
lar profiling on four relapse MYC-amplified cases. In all relapse cases, 
new subclones arose, but all tumour cells harboured the MYC amplifi-
cation (Fig. 5g). For example, in the matched relapse MYC/MYCN case, 
the MYCN subclone was lost at relapse (Fig. 5h). This loss of MYCN 
expression was confirmed using spatial transcriptomics (Fig. 5i and 
Extended Data Fig. 9o,p). These results suggest that the MYC subclone 
outcompetes other subclone(s) during tumour progression and hence 
the presence of subclonal MYC amplification at diagnosis may predict 
the probability of relapse.

Discussion
Despite advances in understanding the cellular origin of group 3/4 
medulloblastoma, the tumour-initiating and driving mechanisms 
remain elusive. In our study, we use single-cell multi-omics data analy-
sis combined with spatial profiling to identify the somatic subclone 
properties within these tumours and demonstrate that the genetic 
aberrations that lead to overexpression of oncogenes are not the likely 
initiating events in group 3/4 medulloblastoma. Therefore, MYC and 
MYCN are probably not the primary ‘drivers’, but instead are acquired 
after malignant transformation and probably accelerate tumour 
growth. Instead, our results suggest that the initiating or ‘driving’ events 
in group 3/4 medulloblastoma are large-scale CNVs. This finding is in 
line with the hypothesis that tetraploidization is a frequent early event 
in medulloblastoma12 and is associated with intermediate survival rates 
and high risk of relapse33. Using mutational clocks and mathemati-
cal modelling, we find that medulloblastoma initiation is probably a 
multi-step process. Specifically, our model suggests that early CNVs, 
acquired as early as in fetal development, drive a pre-malignant clone, 
in which malignant transformation occurs within the first decade of 
life. Although this process is similar to observations in mouse mod-
els, in which an initial hyperplastic state precedes medulloblastoma 
growth34,35, our modelling approach has some limitations. We here 
assume that unipolar brush cell (UBC) progenitors, the likely cell of 
origin of group 3/4 medulloblastomas16,17, divide at a fairly constant 
rate and that tumour growth can be approximated with exponential 
growth. Both assumptions may oversimplify the true biology, which 
may influence our timing estimates. Reassuringly, however, a disease 
origin that dates back to fetal development, or the first year of life, 
agrees with the detection of UBC progenitors in human brain samples 
from this time span24. Intriguingly, another paediatric tumour, neuro-
blastoma, has a similar order of genetic events: CNVs are the initiating 
event and occur early in the first trimester of pregnancy23. How exactly 
large-scale CNVs drive early tumourigenesis in different cell types and 
whether this knowledge can potentially be exploited for early cancer 
detection remain to be explored.

Fig. 4 | Spatial heterogeneity across oncogene-associated group 3/4 
medulloblastoma samples. a, Spatial gene expression of MYC, MYCN and 
PRDM6. Last row, projection of clones derived from snRNA-seq. b, Spatial data 
UMAP of representative MYCN sample. c, Spatial visualization of clones of 
sample in b. Enlarged view of a fragment in the bottom right. d, Proximity of 
each compartment to each other of sample in b. e, MKI67 spatial expression of 
sample in b. f, Spatial data UMAP of representative MYC sample. g, Spatial 

visualization of clones of sample in f. Magnification of specific region in 
bottom right. h, Proximity of each compartment to each other of sample in f.  
i, MKI67 spatial expression of sample in f. j, Spatial data UMAP of representative 
PRDM6 sample. k, Spatial visualization of clones of sample in j. Magnification 
of specific region in top right. l, Proximity of each compartment to each other 
of sample in j. m,n, PRDM6 (m) and MKI67 (n) spatial expression of sample in j. 
diff, differentiated; prolif, proliferating.
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Group 3/4 medulloblastoma with MYC, MYCN or PRDM6 alterations 
have complex subclonal structures, with each subclone having unique 
properties. Therefore, our results strongly argue against the dogmatic 
‘cancer stem cell’ hierarchy for group 3/4 medulloblastoma, as these 
tumours maintain distinct subclones with separate proliferating and 
differentiating compartments, irrespective of the presence of rec-
ognized oncogenes. Although MYC or MYCN amplifications could 
arise from the formation of circular extrachromosomal DNA36, our 
data show that all subclones with MYC/MYCN amplification demon-
strated other large, specific CNV gains and losses within the oncogene- 
amplified subclone, suggesting these clones are not the founder  
clone.

Single-cell spatial data from group 3/4 tumours allowed us to inspect 
the composition of the subclones across tumour tissue fragments; 
however, owing to the fixed number of genes (n = 100) and limited 
image size (maximum 2 mm), some other spatial properties, such as 

formation of blood vessels, were not covered in our study. The applica-
tion of new spatial techniques that overcome such limitations will be 
an important research direction in the future.

In addition, undetected MYC/MYCN subclones challenge the bulk 
analysis approach in the diagnostic space. These findings, along with 
support from others37, suggest that single-cell analyses may be an 
important diagnostic tool in the future, especially for group 4 and 
subgroup V tumours. In addition, our data challenge the cutoffs used for 
a tumour to be called MYC/MYCN-amplified by FISH, as even the smallest 
MYC subclones, which initially have low abundance, have the potential 
to expand into the dominant clone during relapse. MYC amplification 
may drive disease progression and contribute to therapy resistance 
and relapse. Such a pattern of MYC dominance in subclonal evolution 
has been observed in other tumours including gliomas38, suggesting 
that our results may be relevant also to other tumour entities associ-
ated with MYC oncogenesis.
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Fig. 5 | Independent oncogene subclones may co-occur in one tumour, but 
subclones are lost at relapse. a, Copy number profiles of snATAC-seq data 
from MYC-MYCN sample MB272. Red, chromosome loss. Green, chromosome 
gain. b, snRNA-seq UMAP of sample shown in a. Grey boxes, proliferating cell 
clusters with strong proliferation enrichment. Blue, MYCN-expressing C2 
clone. Red, MYC-expressing C3 clone. Orange, C1 clone. c, MYC and MYCN 
expression in C1, C2 and C3 clones. d, Spatial gene expression of MYC (red) and 

MYCN (blue) from original signals. e, Spatial data UMAP of sample shown in d. f, 
Spatial visualization of clones of sample in d. g, Somatic phylogeny trees for 
MYC relapse samples. h, Copy number profiles of snATAC-seq data of relapse 
sample arising from primary sample shown in a–f. i, Spatial gene expression of 
MYC (red) and MYCN (blue) in spatial transcriptomic relapse sample of case 
shown in a–f. Scale bars, 400 μm (d,f), 300 μm (i).
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Methods

Target cohort selection and verification
Target tumour tissue samples were collected from global medulloblas-
toma published materials (ICGC2, fresh-frozen paraffin-embedded 
(FFPE)13 and Individualized Therapy For Relapsed Malignancies in Child-
hood (INFORM)39 cohorts). For each selected case, the copy number/
structural variant profiles from methylation and/or WGS data were 
used to identify MYC/MYCN amplification and SNCAIP structural vari-
ant presence. Bulk gene expression RNA-seq profiles from these samples 
were used to inspect MYC/MYCN/SNCAIP/PRDM6 expression as well. For 
some cases with sufficiently available FFPE material, further FISH experi-
ments were performed to verify the selection (details in Supplementary 
Table 1). No statistical methods were used to predetermine sample size.

Single-nucleus multi-omics sequencing
Flash-frozen tumour samples were processed to extract nuclei as 
described earlier27. Extracted nuclei were processed using Chromium 
Single Cell Multiome ATAC Gene expression kit and Chromium Control-
ler instrument (10x Genomics) as per manufacturer’s recommenda-
tions. One sample, MB248, was processed with Chromium Next GEM 
Single Cell 3′ reagent kit as per the manufacturer’s recommendation. 
In total, 15,000–20,000 nuclei were loaded per channel along with 
the multiome gel bead. Libraries were quantified using Qubit Flurom-
eter (Thermo Fisher Scientific) and profiled using Fragment Analyzer. 
snRNA-seq and snATAC-seq libraries were sequenced using a Next-
Seq2000 to the recommended lengths. If the snATAC-seq library was 
not of good quality, we still used the obtained snRNA-seq library if that 
was found to be appropriate on the basis of quality control parameters. 
snRNA-seq and snATAC-seq datasets were further analysed separately.

snRNA-seq data analysis
De-multiplexed reads were aligned to human genome assembly GRCh38 
(v. p13, release 37, gencodegenes.org). Comprehensive gene annota-
tion (PRI) was customized by filtering to transcripts with the following 
biotype: protein coding, lncRNA, IG and TR gene and pseudogene as 
recommended for cellranger mkgtf wrapper. Reads were aligned using 
STARsolo with parameters: --soloType CB_UMI_Simple --soloFeatures 
Gene GeneFull --soloUMIfiltering MultiGeneUMI --soloCBmatchWLtype 
1MM_multi_pseudocounts --soloCellFilter None --outSAMmultNmax 1 
--limitSjdbInsertNsj 1500000. For overlapping genes for which intronic 
alignment recovered low counts, exonic alignment counts were used. 
Cells were separated from debris using the diem pipeline40. Cells with 
mitochondria fraction above 2%, number of detected genes above 6,600 
and an intronic fraction (number of reads aligned to intron/total num-
ber of reads aligned to exon + intron) less than 25% were also filtered 
out. Filtered cells were corrected for background signature using the 
SoupX pipeline41. Finally, the scrublet42 tool was used to remove puta-
tive doublets. Further, the gene expression matrices from all samples 
were merged together in the full matrix and processed by means of the 
Seurat package43 to normalize, compute top principal complements 
(n = 30), find most highly variable genes (n = 2,500) and visualize by 
means of UMAP. After distinguishing non-tumour cells on the basis of 
corresponding markers and combined UMAPs, per sample processing 
was performed using the Seurat toolkit using the same settings combined 
with cell clustering. The enrichment of proliferation, differentiation and 
progenitor-like activity of medulloblastoma-specific markers per cell was 
performed using the single sample function from the GSVA R package44 
using two independent reference datasets8,9. Cell clusters enriched with 
proliferation signals were selected and marked on the basis of maximum 
GSVA signal enrichment from manual inspection per sample.

snATAC-seq data analysis
ATAC-seq reads were aligned to GRCh38 using the Cellranger arc wrap-
per. The selected cells were processed using the Signac R package45 

to filter the doublets/outliers on the basis of signal per cell distribu-
tion analysis and to inspect the cell compartments by means of UMAP 
visualization after normalization and identification of the most highly 
variable regions. snRNA-seq data information was used to annotate the 
cells from corresponding processed data.

To identify differentially enriched cis-regulatory elements per sample 
per annotation, peaks were first called on the merged snATAC-seq data 
using the ArchR R package46 by first creating pseudobulk replicates 
using addGroupCoverages (minCells=2000, maxCells=5000, minRep-
licates=2, maxReplicates=5, groupBy=“Sample”, maxFragments=100 * 
10^6) and calling reproducible peaks using addReproduciblePeakSet(
groupBy=“Sample”, maxPeaks=150000). Obtained peaks were further 
filtered on the basis of presence in at least 5% of cells in any sample. 
Marker peaks were then obtained using getMarkerFeatures() on the 
basis of subclonal annotation and filtering on the basis of area under 
the curve > 0.52 and false discovery rate (FDR) < 0.01.

Genes correlated to the peaks were identified using addPeak2GeneL-
inks() using the subset of cells with dual snRNA-seq and snATAC-seq 
profiles in the merged data. Correlated genes (more than 0.1) were 
intersected with peaks associated with genes identified on the basis 
of GREAT47 annotation to identify the robust pairs of peaks to gene  
links.

Single-cell CNV phylogeny reconstruction
Initially, CNV analysis was performed on a subset of samples (n = 2 
for each oncogene) using the InferCNV tool14 on the raw gene expres-
sion matrix with droplet protocol adjusted parameters (average read 
counts cutoff 0.5, smooth method runmeans, denoise active) and 
hierarchical clustering by means of the ward.D2 method to derive the 
clonal phylogeny. The main subclones obtained from this phylogeny 
demonstrated a close match to the initial Seurat clustering results 
(mean purity evaluation metrics across samples: 0.921). To further 
improve the visualization and increase computational efficiency, the 
CNV analysis was performed on the full cohort by transferring single 
cells into meta-cells, on the basis of the established method48. For this 
purpose, we computed the sum of gene expression counts across n = 5 
cells combined within the clusters derived from Seurat processing. The 
meta-cell InferCNV calling was performed for each sample separately 
with read counts cutoff 0.5, and the phylogeny clustering results were 
visualized in UMAPs with k as number of clusters, varying from 2 to 5. 
Differentially expressed genes for identified subclones per sample 
were computed by means of a Wilcoxon rank sum test. Significant 
MYC/MYCN/PRDM6 differential expression and progenitor-like activ-
ity enrichment values were computed per cell to finalize the derived 
phylogeny cut limit for each case after manual inspection. The selected 
cut limit for the number of subclones in the phylogeny was verified by 
using random tree subcluster partition in the phylogeny reconstruction 
with a minimum P  < 0.05.

All tumour samples (n = 16) were also merged together and CNV 
profiling was performed to verify the status of non-tumour cells. The 
annotation of verified normal cells was further used as reference con-
trol for each sample.

For snATAC-seq data, a matrix with all genomic regions as raw and 
read counts per column per sample was used to adjust for InferCNV 
input format. Further meta-cell formation and the same CNV calling 
procedure as for snRNA-seq were performed on the derived matrices. 
The subclone annotation derived from snRNA-seq data was used to 
assign corresponding cluster phylogeny per sample.

Interactive CNV visualization for the results from snRNA-seq and 
snATAC-seq data per sample is available through ShinyApp: http://
kokonech.shinyapps.io/mbOncoAberrations.

Mutation calling from snATAC-seq data
For n = 3 MYC cases the number of reads in snATAC-seq data was 
increased up to 3 × 109 per sample to have sufficient coverage for 
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mutation calling. The alignment of novel reads was performed using 
the same strategy as described above. Initial subclone annotation 
was used to classify the cells. Afterwards, the mutation calling was 
performed using the SComatic method49 on the BAM files extracted 
for each subclone. Initial mutation filtering was performed on the 
basis of inspection of somatic mutations derived from WGS data2 
as the main control. Results were also confirmed using the bcftools 
method50 on the full merged pseudobulk snATAC-seq data with stand-
ard settings. The VAF from the full merged pseudobulk mutation 
calling was used to compare with the VAF from bulk control results. 
The visualization of somatic mutation presence across subclones 
per sample was performed by means of the R package ComplexHeat-
map. For more relaxed filtering control, blood bulk WGS control was 
applied to exclude non-somatic mutations, while mutation filtering 
limits were strengthened: min coverage 20× and minimum support 
5×. Annotation of identified mutations was performed using Annovar 
toolkit51 using gencode v.38 materials.

Single-cell DNA and RNA sequencing procedure
Flash-frozen tumour samples were processed to extract nuclei as 
described previously52. Single nuclei were sorted into the wells of 
DNA LoBind 96-well plates using fluorescence activated cell sort-
ing. Each plate was used for downstream genome and transcriptome 
isolation, reverse transcription of the transcriptomes and primary 
template-directed amplification using the ResolveOME Multiomic 
kit from Bioskryb, according to the manufacturer’s protocol. Selected 
wells were used for quality control before library preparation to 
assess the quantity and quality of the extracted genome or transcrip-
tome DNA, using the 4200 TapeStation System. Sequencing librar-
ies were prepared using Illumina-compatible unique dual index 
adaptors, according to the manufacturer’s protocol as provided in 
the ResolveOME kit. After amplification, barcoded libraries were 
pooled and purified using Ampure Beads to select 250–1,000-base 
pair (bp) fragments with an average peak size of 400–500 bp. Mul-
tiplex libraries were sequenced using one lane of the NovaSeq 6000 
System each, with 100-bp paired-end sequencing for the genome 
libraries and 100-bp single-read sequencing for the transcriptome  
libraries.

Single-cell DNA and RNA sequencing data analysis
DNA sequencing reads per cell were initially processed (quality control, 
alignment) by means of the BJ-DNA-QC Nextflow-based pipeline from 
BioSkryb using hg38 as the main reference. CNV profiling was per-
formed with the Ginkgo tool53 on the basis of resolution 100 kilobases 
(kb). Outlier signal adjustment was performed on the basis of cut for 
mean plus 2 s.d. Heatmap visualization was performed by means of 
the ComplexHeatmap R package using the clustering method ward.
D2 with Euclidean distance.

RNA-seq reads per cell were aligned to the hg38 reference by means 
of the STAR tool54. Gene expression counts were computed by means 
of the FeatureCounts option from the Subread toolkit55 using gen-
code v.38 reference. Combined gene expression matrix analysis was 
performed by means of the Seurat toolkit43. Non-tumour cells as well 
as subclone specificity were identified on the basis of the inspection 
of known gene markers and projection into snRNA-seq profiles using 
the transfer Seurat R toolkit function.

Molecular cartography
The specific gene set (n = 100) covering group 3/4 known driver genes 
alongside marker genes of the developing cerebellum non-malignant 
cell types was selected for the protocol (Supplementary Table 7). The 
gene selection was on the basis of specific properties. First, the main 
selection was split into two blocks: tumour-specific genes (60%) and 
normal cell markers (40%). The tumour-specific genes had several 
blocks of selection: (1) known target markers of group 3/4 tumours 

including MYC, MYCN, SNCAIP and PRDM6; (2) proliferation, differen-
tiation and cell-cycle activity markers; (3) cells-of-origin-associated 
markers. The normal cell type markers were selected on the basis of 
knowledge about normal cell types of the cerebellum that could also 
be present in the tumour. For each cell type, at least two markers were 
selected. All selected genes were also verified on available snRNA-seq 
data as well as bulk profiles.

Optimal cutting temperature compound (OCT)-embedded sam-
ples were cryo-sectioned into 10-μm sections onto a molecular 
cartography slide. Fixation, permeabilization, hybridization and 
automated fluorescence microscopy imaging were performed accord-
ing to the manufacturer’s protocol (Molecular preparation of human 
brain (beta), Molecular colouring, workflow setup) as described  
previously52.

Spatial data analysis
The detection of cell boundaries was performed with CellPose56. After-
wards, gene expression counts were computed per cell and extracted 
using further custom Python scripts. Initial cell filtering was performed 
by assigning the minimum number of counts/genes per cell and size 
of the cells. Afterwards, the analysis of the formed gene expression 
matrix, including clustering and UMAP visualization, was executed 
using the Seurat toolkit43. Annotation of cell states and types was 
achieved through direct projection with the snRNA-seq data by means 
of transfer function and verified by visual inspection of marker genes. 
Spatial-specific analysis, the detection of closest cell connections, was 
conducted using the Giotto toolkit57.

Deconvolution analysis of MYC/MYCN cases
The assigned MYC/MYCN single-cell dataset (MB272) with annotation 
of compartments was used as reference control for the CIBERSORT 
method58 to perform deconvolution on a set of bulk FFPE medullo-
blastoma RNA-seq profiles from MYC/MYCN samples13. For each case, 
MYC/MYCN status was derived from methylation copy number profile. 
The deconvolution values obtained from CIBERSORT results were 
visualized by using the ComplexHeatmap R package in order to dem-
onstrate compartment enrichments per sample.

Survival analyses on the basis of expression of MYC as well as the 
computed deconvolution of MYC compartment proportion of multiple 
genes were performed using the Kaplan–Meyer algorithm with applied 
Bonferroni correction for multiple testing. The resulting plots were 
generated by means of the R2 Genomics Analysis and Visualization 
Platform (http://r2.amc.nl).

Bulk RNA-seq data analysis
Bulk RNA-seq data from the ICGC cohort overlapping with WGS data 
were available for 85 group 3/4 medulloblastomas of our cohort2. We 
performed GSVA on reads per kilobase of transcript per million mapped 
read scores using the R package GSEABase. We used the following gene 
sets: MYC target genes: ‘HALLMARK_MYC_TARGETS_V2’, ‘MYC_UP.V1_
UP’, ‘DANG_MYC_TARGETS_UP’26; S-phase genes: ‘REACTOME_S_PHASE’, 
‘SA_G1_AND_S_PHASES’.

Extended gene expression and associated CNV profile metadata for 
405 group 3/4 medulloblastoma samples were integrated for inspec-
tion of common CNV gains/losses3. The chromosomal arm gains 
or losses as provided in this corresponding study were binarized. 
DESeq2 was used to compute differentially expressed genes using 
lfcShrink(type=“apeglm”) and filtered using adjusted P < 0.001 and 
log fold change (lfc) > 0.5 criteria to obtain a list of statistically sig-
nificant altered gene expression. We then used msigdbr and cluster-
Profiler R packages to identify chromosomal loci of the differentially 
expressed genes.

Additionally evident differentially expressed genes (adjusted 
P < 0.05) among the central nervous system tumours provided in the 
corresponding study24 were inspected to identify those that are specific 

http://r2.amc.nl


Article
for common group 3/4 gain (overexpressed, lfc > 0.5) and loss (low 
expressed, lfc < 0.5) regions.

WGS data
Mutation calls (SNVs, indels, CNVs and structural variants (SVs)) of 
previously published WGS data from medulloblastomas of all sub-
types were taken from the ICGC dataset2. Only samples from primary 
tumours with clear subtype annotation and clear ploidy status were 
included; see Supplementary Table 5 for an overview on these samples 
and associated clinical data.

Driver mutations (SNVs and CNVs)
Non-synonymous SNVs, small indels and small structural rearrange-
ments (amplifications, defined as copy number gains ≥ 10, homozy-
gous deletions with less than 0.9 copy numbers and translocations 
with a minimal event score of 5) were classified as driver mutations 
if they targeted a splice-site or an exonic region of PRDM6, MYC or a 
gene listed as a putative driver of medulloblastoma in the cancer driver 
database intogen59 (release date 31 May 2023). Moreover, we included 
TERT promoter mutations at hg19 positions 1295228 and 1295250 as 
drivers. High-level amplifications affecting MYC or MYCN (identified 
from methylation/WGS copy number profiles) and duplications of 
SNCAIP, leading to overexpression of PRDM6 (identified from WGS 
SV calling), were additionally integrated from a previous global data 
analysis2.

Large-scale CNVs were defined as CNVs spanning at least 1 Mb and 
with a coverage ratio less than 0.9 or a coverage ratio greater than 1.1, 
according to the output by ACEseq. Retained CNVs with a size of at 
least 25% the size of the p arm of a respective chromosome were further 
classified as affecting both arms if the CNV spanned the centromere, or 
else as affecting the p arm or the q arm. Among these CNVs, we tested 
for positive enrichment of particular chromosomes in the cohort using 
a binomial test with success probability 1/24 (that is, assuming that 
each chromosome has equal probability to be affected by the CNV). 
Chromosomes with an adjusted P < 0.05 (Holm’s correction) were clas-
sified as likely drivers of medulloblastoma. This analysis was separately 
performed for gained and lost chromosomes. Among group 3/4 medul-
loblastomas, we identified gains of chromosomes 4, 7/7q, 12 and 17/17q 
and losses of chromosomes 8, 10/10q, 11 and 17p as significant. We 
augmented this list by gains of chromosomes 18 and 1q and loss of 5q, 
as was reported previously60.

Timing of CNVs, ECA and MRCA
Quantification of mutation densities at copy number gains was per-
formed using the R package NBevolution v.0.0.0.9000, which is 
described in detail in the corresponding study23. In brief, we counted 
clonal mutations separately on each autosome, stratified by copy num-
ber state using the function count.clonal.mutations() with max.CN=4, 
excluding chromosomal segments with length less than 107 bp. count.
clonal.mutations() fits a binomial mixture model with success proba-
bilities according to the expected mean values of the clonal VAF peaks, 
which, for an impure sample with tumour cell content ρ, are given by
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where CN denotes the copy number of a given segment, b denotes the 
copy number of the minor allele (that is, the allele with the smallest 
number of copies) on this segment and

ζ ρ ρ= CN + 2(1 − ) (2)

is the average copy number of a given locus in the sample. Mutation 
densities (SSNVs per bp) at MRCA and ECA, denoted by mMRCA͠  and m͠ECA, 

respectively, were computed using the function MRCA.ECA.quantifi-
cation(). In brief, MRCA.ECA.quantification() first estimates m͠MRCA 
from the number of all clonal mutations and the total size of the ana-
lysed genome, g g= ∑l l, where the index l labels individual segments 
contributing to the analysis, yielding

͠ ∑m
n n b n b

g
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+ (CN − ) +
CN
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l
MRCA
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where nk l,  denotes the number of clonal mutations present on k copies 
of the l-th segment. Note that m͠MRCA normalizes mutation densities 
per copy and hence can be interpreted as molecular time. The function 
MRCA.ECA.quantification() also computes lower and upper 95% con-
fidence bounds for m͠MRCA by bootstrapping the genomic segments 
1,000 times. In the next step, MRCA.ECA.quantification() asks for evi-
dence for an earlier common ancestor in the data. If a chromosomal 
gain occurs concomitantly with the onset of tumour growth, the den-
sity of amplified clonal mutations (that is, present on multiple copies 
of a gained allele) will, on average, be equal to the density of clonal 
mutations on non-amplified chromosomes or chromosomal regions. 
By contrast, if a chromosomal gain occurs earlier, the density of ampli-
fied clonal mutations on the gained allele will be smaller than the  
density of clonal mutations on non-amplified chromosomes or chro-
mosomal regions. To distinguish these two cases, MRCA.ECA.quanti-
fication() tests for each gained segment whether or not the density of 
amplified clonal mutations agrees with the mutation density at MRCA, 
on the basis of a negative binomial distribution. If the mutation density 
of amplified clonal mutations is significantly smaller than the mutation 
density at MRCA, the segment is assigned to an earlier time point or 
else to the MRCA. MRCA.ECA.quantification() then asks whether seg-
ments assigned to earlier time points emerged in the same time window 
or during different time windows. We define as the null hypothesis that 
all CNVs emerged in an ECA. To test the null hypothesis, MRCA.ECA.
quantification() computes the mutation densities at the ECA from the 
number of clonal mutations on the amplified minor allele, nb l,  (if b > 1), 
and from the number of mutations on the amplified major allele,  
n b lCN− , , as

∑
∑
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where P ladj,  is the adjusted P value of segment l belonging to the MRCA, 
and gl b,

 and gl b,CN−
 are the length of segment l, contributed by the  

amplified minor and major alleles, respectively. In analogy to m͠MRCA, 
MRCA.ECA.quantification() also estimates lower and upper 95% con-
fidence bounds by bootstrapping. On the basis of a negative binomial 
distribution (and an FDR of 0.01), MRCA.ECA.quantification() then 
tests for each early segment whether or not its mutation density indeed 
conforms to a joined ECA, as defined by m͠ECA. Only segments with 
mutation densities conforming to m͠ECA  are assigned to the ECA, 
whereas all other segments are reported as conforming neither to the 
ECA nor to the MRCA.

Upon timing MRCA and ECA for each sample, we translated mutation 
densities into weeks post conception (p.c.) by inferring SSNV rates  
per diploid genome and embryonic day (µλ), using the measured VAF 
distributions and age at diagnosis as outlined below in section 
‘Real-time estimate of cell division rate’. As mutation calling was per-
formed by comparing tumours against a matched blood control,  
mutation densities correlate with the time after gastrulation (at approx-
imately 2 weeks after conception). Thus, the mutation density per 
haploid genome (3.3 × 109 bp), m͠ , relates to the time p.c. according  
to m͠ t t( ) = ( − 14 d)

µλ
day

1

3.3 × 109 . The estimated time of birth was taken as 
38 weeks after gastrulation (40 weeks p.c.).



Timing of SNVs and small indels
We classified SNVs and small indels as subclonal or clonal on the basis 
of the number of variant reads, nvar, the number of reference reads, 
nref, tumour purity ρ and copy number k. Specifically, mutations were 
classified as subclonal if the probability to sample at most nvar variant 
reads out of n n+var ref total reads according to a binomial distribution 
with success probability ρ

ρk ρ+ 2(1 − )
 was smaller than 5%. If a mutation 

was classified as clonal and fell on a region with k = 3, we moreover 
classified the mutation as early clonal (that is, acquired before the 
chromosomal gain on the gained chromosome and hence present on 
at least two copies) if the probability to sample at most nvar variant 
reads out of n n+var ref total reads was at least 5% according to a bino mial 
distribution with success probability ρ

ρk ρ
2

+ 2(1 − ), or else as late clonal.

Modelling medulloblastoma initiation
We modelled medulloblastoma initiation and growth with a population 
genetics model originally developed for neuroblastoma, as described 
previously23. In brief, the model assumes that disease initiation is driven 
by two consecutive drivers in a transiently expanding tissue of origin, 
which for group 3/4 medulloblastoma is probably the population of 
unipolar brush cell progenitors (UBCPs16,17,24). The two driver events 
are associated with the ECA and the MRCA of the tumour, and spawn, 
respectively, a pre-malignant and the malignant tumour clone. We 
assumed that both drivers occur with small probabilities µ1 and µ2 
during cell divisions, and confer a selective advantage (r  and s, respec-
tively) that acts by reducing cell differentiation. Moreover, we assumed 
that UBCPs acquire on average µ neutral somatic variants per cell divi-
sion, which we modelled with a Poisson process. The population of 
UBCPs has been experimentally described from week 9 p.c. until the 
time of birth24,27. To capture this trend, we modelled an initial phase of 
exponential growth at rate λ δ λ δ− , >1 1 1 1 until time T , where λ1 and δ1 
denote the division and differentiation rate, respectively, and a subse-
quent phase of exponential decline at rate λ δ λ δ− , <2 2 2 2.

Following refs. 23,61, we calculated the probability of the MRCA to 
occur at time t according to
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δ
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2
 is the survival probability of a cell undergoing  

the second oncogenic event while the population decays, 
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. Moreover, we calcu-

lated the probability of the ECA to occur at t1, conditioned on the MRCA 
occurring at t2, as described previously23
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where Θ( )∙  is the Heavyside step function and t t0 ≤ <1 2.
To estimate the model parameters from the WGS data, we con-

trasted the probability of acquiring the first and second drivers with 
the measured distribution of SNV densities at ECA and MRCA in group 
3/4 medulloblastomas using approximate Bayesian computation 
with sequential Monte-Carlo sampling (ABC-SMC), as implemented 
in pyABC62. We used a population size of 1,000 parameter sets and 25 
SMC generations or ε ≤ 0.05 as termination criteria. The model fit was 
performed in analogy to Körber et al.23 (code and pseudo-code are 
available at https://github.com/kokonech/mbOncoAberrations). 95% 
posterior-probability bounds for the model fits were estimated by 
simulating the model with each sampled parameter set and cutting 
off 2.5% at each end of the simulated distribution.

Modelling medulloblastoma growth
We modelled medulloblastoma growth from the MRCA as exponential 
growth with rate λ δ−T T , where λT  denotes the division rate and δT  the 
loss rate (owing to differentiation or death) in the tumour. Denoting 
the number of tumour cells with N t( )T  and assuming that neutral muta-
tions are on average acquired at a rate µλ N t( )T T  per haploid genome 
during tumour growth, the site frequency spectrum of neutral variants 
at tend is, on average63,

∫S i µ P λ δ t t µkλ N t dt( , ) = ( , , − ) ( ) , (7)k

t

i T T T T
0

1, end

end

where k is the chromosomal copy number, and P λ δ t t( , , − )i T T1, end  is the 
probability to grow from a single cell to a clone of size i within a time 
span t t−end , according to a supercritical linear birth–death process 
(for example, see ref. 64).

To estimate µ and δ λ/T T  from the WGS data, we followed the strategy 
described previously23 to compare M a µ( , )k , the cumulative allele fre-
quency histogram of variants present in at least a cells in regions with 
copy number k, given a mutation rate µ, between model and data. Here,
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To this end, we used ABC-SMC62 with a population size of 1,000 param-
eter sets and 25 generations or ε ≤ 0.05 as termination criteria. To learn 
the dynamics of tumour growth with confidence, we included tumours 
with well-defined subclonal tails and no evidence for subclonal selec-
tion. Tumours were selected (Supplementary Table 5) on the basis of 
visual inspection of the VAF histograms, to remove cases with poor 
subclonal resolution. In addition, we removed cases without age infor-
mation and those with evidence for subclonal selection as suggested 
by the evolutionary model implemented in Mobster65 (setting auto-
setup = ‘FAST’), which we ran on autosomes and upon computing 
pseudo-heterozygous VAFs, VAF, defined as 50% of the mutant sample 
fraction, SF (hence, VAF = VAF

ζ
k2

 , where k  is the number of alleles  
carrying the mutation and VAF is the actual VAF). For the 35 retained  
group 3/4 medulloblastomas, we followed the strategy outlined by 

https://github.com/kokonech/mbOncoAberrations
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Körber et al.23 to estimate the model parameters from the measured 
VAF distribution (code and pseudo-code are available at https://github.
com/kokonech/mbOncoAberrations).

Real-time estimate of cell division rate
From the model fits of medulloblastoma initiation and growth to WGS 
data, we estimated differentiation/loss rates and mutation rates rela-
tive to the rate of cell divisions. To convert these estimates to real-time, 
we used the age distribution at diagnosis for calibration. In a first step, 
we estimated the cell division rate of UBCPs, λ, from the number of 
generations between gastrulation and MRCA plus the number of gen-
erations between MRCA and diagnosis (tD), which can be inferred from 
the mutational burden in the tumour23. Recall the selective advantage 
of the growing tumour, s. With λT = sλ, this yields
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where we used the estimate for µ  from the parameter  
inference for medulloblastoma initiation and the estimate for  

the effective mutation rate, µ =
µ

eff 1 −
δT
sλ

, from the parameter infe-

rence for medulloblastoma growth. Assuming a tumour mass in  
the order of a few cubic centimetres and hence N t( ) =T D  109 cells, and 
defining tD as the age at diagnosis, A, plus, on average, 250 d of 
embryogenesis after gastrulation, we obtained for each tumour 
(labelled with index i) an estimate for the division rate with mean,  

͠λ m µ⟨ ⟩ = (⟨2 ⟩ + log10 ⟨ ⟩)i µ A i i
1
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, and standard deviation, 
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eff,







͠

͠
, in 

actual time (where the factor 2 accounts for the fact that µ⟨ ⟩ and m͠ iMRCA,  
measure the mutation rate and the mutation density, respectively, per 
haploid genome).

Finally, we computed the mutation rate per day during tumour ini-
tiation, by computing µλT i, , with associated uncertainty µ λ λ σ µΔ + ( )T i T i, , , 
which relates the molecular clock to real-time. For this purpose, we 
averaged across the inferences from all tumours that went into the 
analysis.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The DNA whole-genome sequencing mutation results were inte-
grated from the corresponding medulloblastoma molecular land-
scape study2 deposited at the European Genome-Phenome Archive 
under accession number EGAS00001001953. Single-nucleus RNA 
and ATAC data are available at the GEO database under accession 
numbers GSE253557 and GSE253573. All raw images and processed 
data after cell segmentation from spatial transcriptomics experi-
ments are available at the GEO database and can be accessed under 
accession number GSE252090. Variant calls from WGS data are avail-
able from Mendeley Data (https://doi.org/10.17632/g4r22w9pp8.1). 
scRNA/ATAC and WGS data analysis results can be visually inspected 
on the interactive web application http://kokonech.shinyapps.io/ 
mbOncoAberrations.

Code availability
All custom Python and R scripts as well as details about the external 
software environment applied during the data analysis are available 

at GitHub (https://github.com/kokonech/mbOncoAberrations) and at 
Zenodo (https://doi.org/10.5281/zenodo.15083518)66.
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Extended Data Fig. 1 | See next page for caption.



Extended Data Fig. 1 | Group 3/4 medulloblastoma single-nuclei RNA  
and ATAC data properties. a) UMAP of snRNA-seq merged dataset with 
medulloblastoma groups annotated. Non-tumor cells marked by dotted box. 
Feature plots showing b) SNCAIP, c) PTPRC, d) IGFBP7 and e) AQP4 expression 
within UMAP of merged snRNA-seq dataset. f) Global CNV profiles derived 

from snRNA-seq data. Top fragment: non-tumor cells. G) UMAP of snATAC- 
seq merged dataset with medulloblastoma groups annotated. Green box, 
normal cells. h) UMAP of snATAC-seq merged dataset with medulloblastoma 
subgroups annotated.
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Extended Data Fig. 2 | Validation of copy number profiling using single- 
nuclei RNA and ATAC data. a) Merged pseudo-bulk CNV profile of snRNA- 
seq data from sample MB292 b) Methylation data-derived CNV profiles from 
sample MB292. c) Correlation plot of CNV values across 500 Kbp bins between 

snRNA-seq pseudo-bulk and methylation bulk profiles from sample MB292.  
d) Cross-comparison of snRNA-seq CNV profiles against bulk profiles. Red boxes, 
3 cases where the highest correlation does not correspond to the same sample. 
e) Cross-comparison of snATAC-seq CNV profiles against bulk profiles.



Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Copy number profiling of single-nuclei profiles from 
Group 3/4 MYC- and MYCN-amplified samples. a) Copy number profile of 
snRNA-seq data from MYCN samples MB183. b,c) Per cell GSVA enrichment  
of proliferation (b) and differentiation (c) markers within UMAP of MB183 
MYCN-amplified sample. d) Differentiation signal compared to ranked MYCN 
expression within MYCN-amplified subclone in sample MB183. MYCN normalized 
expression cutoffs: low = zero, intermediate > 0 and <2, high > 2. e) Boxplots 
showing difference in mean signal of progenitor-like activity (left) and 
differentiation (right) between MYCN-amplified and non-MYCN-amplified 

subclones in n = 4 tumor cases. f) Copy number profiles of snATAC-seq data 
from MYC sample MB89. Right side: zoom-in on MYC region. g,h) Per cell GSVA 
enrichment of proliferation (g) and differentiation (h) markers within UMAP of 
MB89 MYC-amplified sample. i) Differentiation signal compared to ranked MYC 
expression within MYC-specific sublclone in sample MB89. MYC normalized 
expression cutoffs: low = zero, intermediate > 0 and <2, high > 2. j) Boxplots 
showing difference in mean signal of progenitor-like activity (left side, t-test 
p-val: 0.003) and differentiation (right side) between MYC-amplified and non-
MYC-amplified subclones in n = 6 tumor cases.



Extended Data Fig. 4 | Copy number profiling of single nuclei profiles from 
Group 3/4 PRDM6 samples. a) Copy number profiles of snATAC-seq from 
SCNAIP-PRDM6 sample MB249. b) Per cell GSVA enrichment of proliferation 
markers within UMAP of MB249 PRDM6 sample. c) Boxplots showing the 
difference in the mean signal of progenitor-like activity (left) and differentiation 
(right) between PRDM6- and non-PRDM6 subclones in n = 3 tumor cases.  
d-e) Correlation of VAF between mutations called from snATAC and bulk WGS 

data from n = 3 MYC cases: MB272 (d), MB89 (e), MB248 (f). g-i) Mutation 
heatmaps obtained via snATAC-seq data across subclones f from n = 3 MYC 
cases: MB272 (g), MB89(h), MB248 (i). j-l) Boxplots of comparison for number 
of subclone-specific vs. common mutations across snATAC profiles from  
n = 3 MYC cases: MB272 ( j), MB89(k), MB248 (l) SNVs were filtered using bulk 
germline control and additional filtering parameters (see Methods for details).
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Extended Data Fig. 5 | Single-nuclei DNA and RNA data from Group 3/4 
samples confirm CNV subclones. a) Projection of RNA data into annotation  
of subclones. b-c) Cross-comparison of snRNA-seq (b) and snATAC-seq  
(c) subclonal CNV pseudo-bulk profiles against scDNA subclonal CNV profiles. 

d-i) Single-cell DNA copy number profiles from MYCN samples MB165 (d), 
MB183 (e), and MYC samples MB248 (f), MB89 (g), MB272 primary (h) and 
MB272 relapse (i). Zoom-in for target region (MYC or MYCN) is provided on  
the right side.



Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Early evolution of Group 3/4 medulloblastoma.  
a) Medulloblastoma samples analyzed by bulk WGS. b) SNV variant allele 
frequencies on disomic chromosomes for sample MB104 (G34_VIII). Green line, 
fitted clonal SNV density; dashed line, true clonal VAF estimated with ACEseq. 
c), SNV densities at MRCA (39 MB G3, 69 MB G4, 21 MB SHH INF, 35 MB SHH CHL/
AD, and 17 MB WNT; 4 MB SHH CHL/AD and 2 MB WNT had clonal densities 
between 0.7 and 2.9 SNVs/Mb and are not shown). Mean and 95% CI (estimated 
by bootstrapping genomic segments 1,000 times). d) Mean SNV densities at 
MRCA versus age at diagnosis (n = 173 cases with age information). e) As in d but 
for G3/4 subgroups (n = 105 cases with age information). f) Left panel, number of 
early CNVs per tumor. Right panel, percentage of early CNVs with SNV densities 
agreeing with a single ECA. Data are from G3/4 medulloblastomas with evidence 

for an ECA. g), Comparison between mutation density estimates obtained in 
this paper and with MutationTimeR22. Estimates at gains/LOH were computed 
relative to the MRCA using both methods. Shown is the percentage of CNVs per 
tumor with overlapping 95% CIs. Data are from 38 MB G3, 66 MB G4, 15 MB SHH 
INF, 28 SHH CHL/AD, and 9 MB WNT with clonal gains/LOH at copy number ≤4 
and at least 107 bp length. h) Population genetics model of tumors initiation in 
two steps. i) GSVA scores for MYC target genes and S-phase genes (86 G3/4 
medulloblastomas with RNAseq data). j) Overall survival of 23 Group 3 and 36 
Group 4 medulloblastomas with available data. k) Doubling times estimated 
from 35 G3/4 medulloblastomas using the population-genetics model outlined 
in h). l) Posterior probabilities for the model fit to all G3/4 MBs (n = 108). <µ1, µ1>, 
geometric mean of the driver mutation rate.



Extended Data Fig. 7 | Clonal copy number changes in Group 3/4 
medulloblastoma. a) Percentage of tumors with copy number gains and  
losses ≥1 Mb along the genome. Red, regions where CNVs were significantly 
more frequent than expected, according to a Binomial test with padj < 0.01; 
Holm correction for multiple sampling. Shown are data from 109 Group 3/4 

medulloblastomas. b, SNV densities at clonal chromosomal gains and at MRCA. 
Shown are mean and 95% confidence intervals (confidence intervals for SNV 
densities at chromosomal gains/LOH were estimated according to a Poisson 
distribution; confidence intervals for SNV densities at MRCA were estimated by 
bootstrapping genomic segments 1,000 times.
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Extended Data Fig. 8 | See next page for caption.



Extended Data Fig. 8 | Spatial resolution of sub-clonal tumor populations. 
a) UMAP of spatial merged dataset with medulloblastoma groups annotation. 
Normal cells marked. b) UMAP of spatial merged dataset with medulloblastoma 
subgroups annotation. c-e) Feature plots showing c) AQP4, d) IGFBP7 and  
e) PTPRC expression within UMAP of merged spatial dataset. f) Spatial gene 

expression of MKI67, EOMES, AQP4, IGFBP7 and PTPRC across samples. g) Spatial 
visualization of clones of PRDM6 sample in 2nd image fragment. h) PRDM6 and  
i) MKI67 spatial expression of sample in g. j) PRDM6 and k) MYCN spatial gene 
expression in image fragment of sample MB292.
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Extended Data Fig. 9 | See next page for caption.



Extended Data Fig. 9 | Independent oncogene clones may co-occur in one 
tumor. a) CNV profile of MB272 cases bulk methylation data. b) Per cell GSVA 
enrichments of proliferating, progenitor-like and differentiation in single sample 
MB272. Spatial expression of c) MYC, d) MYCN, e) CA10 and f) GABRA5 in sample 
MB272. g) Proximity of each compartment to each other in sample MB272 
spatial data. h) Negative correlation (R = −0.287, P = 1.08e-09) between MYC 
and MYCN expression within medulloblastoma FFPE bulk RNA-seq cohort 
(n = 435). i) CNV profile of bulk methylation data from a Group 3/4 tumor with 
amplifications of MYC and MYCN. j) Identification of MYC (left) and MYCN 
(right) signals in the same sample using immunohistochemistry (IHC).  
k) CIBERSORT deconvolution results across subset of MYC/MYCN cases  

from medulloblastoma bulk FFPE RNA-seq cohort. MB272 single cell data with 
subclones annotation used as a reference, the data from control case is marked 
with c, target sample marked with asterisk. l) Identification of MYC (red) and 
MYCN (green) signals in the highlighted target Group 3/4 sample described in 
panel (k) using FISH. m) Kaplan–Meyer overall survival probability curves for 
medulloblastoma Subgroup V tumors with (red) and without (blue) MYC 
amplification as identified from bulk data CNV profiling. n) Kaplan–Meyer 
overall survival probability curves for medulloblastoma Subgroup V tumors 
with high (red) and low (blue) MYC subclone level enrichment. o) MYC and p) 
MYCN expression in spatial transcriptomic relapse sample.
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