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1. Chromatin organization and dynamics 

1.1 Chromatin conformation regulates cell function  

Nearly every cell of an individual organism carries the full DNA sequence information. 
Differentiation into one of the numerous specialized cells within an eukaryotic organism is 
accomplished by translating only a certain subset of genes. The genetic information is 
translated from the DNA to proteins. Thus, the cells in the nervous system, the epidermal 
tissue or in the liver differ not in their DNA sequence composition but in the spatial and 
temporal divergent gene expression patterns during embryogenesis and development. 
Fully differentiated cells maintain a distinct and well defined gene expression pattern that 
assures the survival of the organism. Disruption of the underlying regulatory network can 
result in severe diseases. Malignant cancer tissues divide continuously and are capable of 
invading other healthy organs. 
One of the regulative elements that ensure proper gene expression is the dynamic 
organization of the DNA into the so called chromatin within the cell nucleus. Chromatin is 
constituted by the DNA in the cell nucleus as well as its associated proteins (van Holde, 
1989). Its composition and structure is highly dynamic and reflects the functional 
differences in biological activity. On microscopic images different chromatin 
conformations are visible. Highly condensed regions of chromatin persist during all cell 
cycle stages whereas other chromatin regions become decondensed during interphase 
(Craig, 2005; Cremer and Cremer, 2001). These compacted chromatin segments referred 
to as heterochromatin, are established and maintained by a variety of enzymatic and 
structural factors. For example genes remaining silent in the nervous system can be shut 
down by the dense compaction of the encoding DNA sequences into heterochromatin, 
whereas transcriptionally active genes are more often found in the more decondensed 
chromatin environment called euchromatin (Gilbert et al., 2004). The different chromatin 
environments can be interchangeable and are then termed facultative hetero- and 
euchromatin. If specific chromatin segments are persistently condensed, which often 
occurs at centromers and telomers (the midst and ends of the chromosomes) these domains 
are termed constitutive heterochromatin, often characterized by highly repetitive DNA 
elements.  
However, not only gene expression is regulated by different chromatin structures. The 
compaction of the chromatin into the mitotic chromosomes for example, a highly 
condensed state during mitosis, is a prerequisite for the correct segregation of the DNA 
into the two daughter cells.  Specialized chromatin structures are involved in the 
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interaction of the chromosomes with the spindle apparatus during mitosis and direct 
specific proteins to form the correct attachments. The compaction state of gene encoding 
DNA sequences is regulated by a wide variety of protein factors. The mechanism by 
which these factors alter chromatin conformation and thereby influence gene expression is 
therefore of fundamental interest. Before evaluating the changes in chromatin 
conformation it is inevitably necessary to understand the main principles that determine 
chromatin structure and govern the dynamic properties of chromatin organization.  
 

1.1.1 The organization of DNA into chromatin 

The fundamental step in condensing DNA into chromatin is achieved by the formation of 
the nucleosome. This complex consists of ~147 bp of DNA that are wound about ~1.7 
times around an octameric histone protein complex (Germond et al., 1976; Kornberg, 
1974). Two copies of the histone proteins H2A, H2B, H3 and H4 form this octameric core. 
The nucleosome is the main building block of chromatin and almost all DNA in the cell 
nucleus is associated with core histones into a chain of nucleosomes. An additional fifth 
histone protein, the linker histone, binds to the nucleosome at the DNA entry-exit sites, 
forms the chromatosome unit and thereby contributes to the formation of higher order 
chromatin structure (Bednar et al., 1998; Bellard et al., 1976; Carruthers et al., 1998; 
Kepert et al., 2003; Kepert et al., submitted; Thoma et al., 1979). While the four basic 
histones are highly conserved among organisms the linker histones form a more 
heterogeneous protein family (Cole, 1984).The core nucleosome complex has been 
resolved in high resolution x-ray studies and the path of the DNA around the histone 
octamer is well known (Arents et al., 1991; Harp et al., 2000; Harp et al., 1996; Luger et 
al., 1997a). However the exact binding sites for the linker histones and the further 
condensation of the nucleosomal chain are still controversial and unresolved (Travers, 
1999; Vignali and Workman, 1998).  
From microscopic observations it was concluded that the chain of nucleosomes folds back 
into a fiber like structure with an apparent diameter of 30 nm (Felsenfeld and McGhee, 
1986; Finch and Klug, 1976; McGhee et al., 1983; Thoma et al., 1979). The exact 
structure of this fiber is not known in detail and different models exist that mainly differ in 
the geometry and path of the DNA between the nucleosomes (Fig. 1.1) (Finch and Klug, 
1976; Williams et al., 1986; Woodcock et al., 1993). Recent electron microscopy data hint 
at a zig-zag model in which the linker DNA is straight (Dorigo et al., 2004). In addition, a 
crystal structure of a tetranucleosome has been published recently, showing straight linker 
DNA, indicative of a fiber geometry similar to the zig-zag model (Schalch et al., 2005). 
The 30 nm fiber folds back into higher-order structures with a diameter of 100-200 nm as 
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proposed by the  chromonema model (Belmont and Bruce, 1994; Sedat and Manuelidis, 
1978)[Horn, 2002 #8997. The organization in the nucleus further condenses the chromatin. 
At its highest condensation state during mitosis the DNA is then compacted by a factor of 
~10000.  
The transitions in chromatin conformation, being catalyzed by a wide variety of protein 
factors with significant differences in function and complexity, are tightly regulated. They 
range from the small chromatin binding HMG-proteins (high mobility group-proteins) to 
larger structural determinants as MeCP and HP1 (methyl CpG binding protein, and 
heterochromatin protein) and multi-component chromatin remodelling machineries with 
molecular weights in the mega dalton range [Bustin, 1996 #4965](Georgel et al., 2003; 
Wade et al., 1998). These factors can change the protein composition of chromatin and 
lead to conformation changes of the chromatin fiber (Becker, 2005; Langst and Becker, 
2004). The rearrangements are also inevitable during processes like replication, DNA 
repair and transcription, as shown for the RNA polymerase, which has to transcribe 
through a nucleosomal template (Belotserkovskaya et al., 2003; Studitsky et al., 2004). 
Some of the underlying modifications and factors involved in these processes will be 
discussed in the following in relation with their putative involvement in gene expression.  

 

 
 
 
 
 
 
 
 
Figure 1.1 Two different models for the 
30 nm chromatin fiber. (A) Schematic 
illustration of a 30 nm fiber according to 
the solenoid model. The chain of 
nucleosomes forms a regular helix in 
which successive nucleosomes interact 
with each other. The linker DNA 
between nucleosomes is tightly bent. 
(B) Fiber organization after the zig-zag 
model. The resulting fiber resembles the 
fiber structure from the solenoid model. 
Instead the geometry is very different. 
The linker DNA is straight and 
successive nucleosomes do not 
interact. From (Schiessel et al., 2001). 
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1.1.2 The Linker histones  

Linker histones are not related in their sequence to core histones and many isoforms exist 
(Harvey and Downs, 2004; Kasinsky et al., 2001). In human for example seven linker 
histones have been described. However, most of the linker histones of higher eukaryotes 
show a similar tripartite structural composition (Harvey and Downs, 2004). The common 
motifs are highly positively charged N- and C-terminal domains which flank a compact 
globular domain. These N- and C-terminal domains are rich in the amino acids lysine and 
arginine. They are believed to be mainly unstructured in solution while the globular 
domain has been crystallized and analyzed in high resolution x-ray studies (Ramakrishnan 
et al., 1993). The structural data and in vitro DNA binding studies hint at the presence of 
two DNA binding sites at the globular domain (Goytisolo et al., 1996; Varga-Weisz et al., 
1994). This domain comprises a winged helix domain, which is found in a number of 
DNA binding proteins (Gajiwala and Burley, 2000). The C-terminal domain has also been 
proposed to carry a DNA binding motif (Mamoon et al., 2002; Vila et al., 2000). 
Micrococcus nuclease digestions on chromatin templates show that linker histones are 
capable of protecting 20 bp of DNA additional to the 146 bp in the nucleosome core 
complex (Noll and Kornberg, 1977; Simpson, 1978). These additional 20 bp appeared to 
be asymmetrically protected in a study with the 5 S RNA sequence of Xenopus laevis and 
Lytechinus variegatus (An et al., 1998; Hayes and Wolffe, 1993). Roughly five base pairs 
on one side and 15 one the other were protected against Mnase digestion. But this 
asymmetric protection pattern was suspected to arise from differences on the 5` and 3` 
flanking sequences in the templates or be due to a translational shift of the nucleosome 
position upon linker histone binding. Thus, the occurrence of symmetric protection could 
not be ruled out completely and might depend on the flanking DNA sequences. The 
binding position at the nucleosomal surface and the exact interactions of the linker histone 
with the nucleosomal DNA has also been challenged in several studies. These studies 
conclude in divergent models concerning the position and the DNA contacts formed by the 
linker histone and are reviewed in the following reviews (Crane-Robinson, 1997; Travers, 
1999; Vignali and Workman, 1998).  
One of the key differences in these models is the rather symmetric or asymmetric binding 
of the linker histone at the nucleosome core (which is not necessarily correlated with the 
symmetric or asymmetric DNA protection pattern, see also Figure 1.2). Previous analysis 
with the 5 S RNA gene proposed an asymmetric binding pattern, formed on two 
translationally different positions of the nucleosome complex on the studied nucleotide 
sequence (Hayes, 1996; Pruss et al., 1996). Studies of bulk sequences and a detailed 
analysis on the translational nucleosome positions on the 5 S rDNA argue rather for a 
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symmetric position of the linker histones (Panetta et al., 1998; Zhou et al., 1998). The 
linker histone and its binding properties to free DNA duplexes along with the implications 
in chromatosome structure were therefore investigated (Kepert et al., submitted). In this 
study an atomic model for the chromatosome has been build with molecular modeling 
techniques, based on the recently published x-ray structure of a tetranucleosome (Schalch 
et al., 2005). 
The contribution of linker histones in maintaining higher-order chromatin structure has 
been investigated in detail (Bednar et al., 1998; Carruthers et al., 1998; Huang and Cole, 
1984; Leuba et al., 1998). Since not a complete compaction of chromatin templates 
without linker histones could be accomplished it has been concluded that linker histones 
maintain a higher-order conformation and facilitate the compaction of the chromatin fiber 
(Ausio, 2000b; Carruthers et al., 1998; Leuba et al., 1998). The implications of linker 
histones on gene expression have also been investigated in several studies. It has been 
shown that over-expression of the histone H1.0 in cultured mouse cells reduced steady-
state transcription of nearly all Pol-II dependant genes (Zlatanova and Doenecke, 1994). 
Binding of linker histones to the nucleosomes has been shown to inhibit in vitro 
transcription of a Pol III transcribed gene in vitro (Hayes et al., 1996; Ura et al., 1996). 
Generally linker histones are considered as closing factors that repress transcription 
(Zlatanova et al., 2000).  
The mechanisms by which linker histone content modulates transcriptional activity of 
specific genes might differ from case to case. The idea that condensing the chromatin per 
se leads to specific gene repression is likely not to be true. It has been shown for some 
genes that transcription factors could displace linker histones from enhancer/promotors of 
specific genes thereby stimulating transcription (Bresnick et al., 1992; Cirillo et al., 1998; 
Kermekchiev et al., 1997; Lee and Archer, 1998). One of the most intensively studied 
model system again are the oocytic and somatic 5 S RNA genes. Both coding sequences 
comprise 120 bp and differ only in seven base pairs. The 5’ and 3’ flanking sequences lead 
to different nucleosome positioning signals resulting in changed expression patterns 
(Panetta et al., 1998). The two genes require TFIIIA binding for expression. In the somatic 
gene the binding sites for TFIIIA is mainly exposed at the outside of the nucleosome while 
most of the oocytic nucleosome positions bury the TFIIIA binding site in the nucleosome. 
Additionally in the somatic version the TFIIIA binding site overlaps with the linker 
histone binding site and TFIIIA binding displaces H1 resulting in insensitivity to linker 
histone dependant repression. In contrast, in the oocytic gene the TFIIIA binding sites do 
not exclude H1 binding and therefore can be repressed by linker histone binding.  
Recently a new group of highly abundant proteins in the nucleus, the histone chaperones, 
have been implicated with linker histone displacement from chromatin, which was also 
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investigated in my PhD work (Kepert et al., 2005; Ramos et al., 2005; Shintomi et al., 
2005). It has been proposed that linker histones bound to the nucleosome abolish binding 
of factors needed for transcription initiation. Nucleosomes depleted of linker histones 
display a temporally unpeeling of DNA, whereby transcription factors can gain access to 
their target sequences (Mizuguchi et al., 2004; Yang et al., 1994). The decondensation of 
the chromatin fiber by linker histone displacement may further facilitate the access of the 
transcription machineries to the nucleosomes during transcription elongation. 
Consequently, factors that bind more tightly to the nucleosome as the linker histones and 
induce a chromatin condensation could act as transcriptional repressors. Posttranslational 
modifications of linker histones, as phosphorylation and ADP-ribosylation have been 
reported and extend the possibilities of regulation (Dou et al., 2002; Sweet et al., 1997; 
Sweet et al., 1996). 

  (A) (B)

(C) (D) 

core particle 

bridging model 

Alan et al. 1980 

W ol f fe-Hayes mode l

 

 

 

 

 

 

 

 

Figure 1.2 Different models for linker histone position at the nucleosome. (A) Nucleosome core particle, 
detailed known from x-ray studies. (B) Symmetric binding of the globular domain of the linker histone at the 
inner DNA gyre in the nucleosome. The protein contacts only one DNA duplex (Allan et al., 1980). (C) A 
model similar to the Alan model but the protein contacts two DNA strands at the entry/exit site (Lambert et al., 
1991). (D) The Wolffe-Hayes model that proposes the asymmetric binding of the globular domain. These 
results stem form the analysis with the 5 S RNA positioning sequence (Pruss et al., 1996) (see Text for 
detailed overview) (Scheme adopted from Travers et al. (Travers, 1999)).   
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1.1.3 Histone variants 

Another mechanism in regulating chromatin conformation arises from the possibility to 
exchange the core histone proteins against the so-called histone variants which include 
H2A.X, H2A.Z, macroH2A, H2A-Bbd, H2AvD, H3.3 and CENP-A (centromer protein A) 
(Henikoff and Ahmad, 2005; Kamakaka and Biggins, 2005). These histone variants can be 
incorporated both in a replication dependant and independent pathway and contribute to 
the epigenetic histone code, which is inherited to ancestor cells. Up to date mostly variants 
for the histones H2A and H3 were found. Since the two H2A histones (and the two H3 
histones) contact each other in the nucleosome this specificity in variance could be a 
mechanism to impede chimerical nucleosome formation (Suto et al., 2000).  
The histone variants for H2A differ mainly in sequence and length of their C-terminal 
tails. Some variants are restricted to individual chromosomes, as macroH2A to the inactive 
x-chromosome and H2A-Bbd to the active one (Chadwick and Willard, 2001; Costanzi 
and Pehrson, 1998). H2A.X and H2A.Z are constitutively expressed and found throughout 
the whole genome (Kamakaka and Biggins, 2005). There exist reports about both 
transcriptional repression and activation by the variant H2A.Z (Farris et al., 2005; 
Larochelle and Gaudreau, 2003). It also seems to interact with HP-1 linking it to 
heterochromatin formation as well as it has been implicated in formation of boundary 
elements that impede facultative heterochromatin spreading throughout the chromosome 
(Meneghini et al., 2003; Rangasamy et al., 2004).  
For the histone H3 the main variants are H3.3 and CENP-A. The incorporation of histone 
H3.3, which differs only in four AA from the main variant, seems to activate transcription 
(Ahmad and Henikoff, 2002; Janicki et al., 2004). CENP-A is involved in establishing 
proper centromer formation. It has been proposed as an epigenetic marker that directs 
other factors essential for kinetochor formation (Collins et al., 2005; Sullivan, 2001; 
Sullivan et al., 1994; Van Hooser et al., 2001). However CENP-A alone seems not be 
sufficient in centromer assembly.  
These examples show that incorporation of histone variants appear to be an important 
determinant of the chromatin conformation. The histone variants can recruit other factors 
that facilitate structural rearrangements leading to different functions. The structure for 
some of such altered nucleosomes has been now studied and their influence on chromatin 
folding is being investigated. For the histone variant H2A.Z it has been shown that 
compact fiber folding is stabilized, but intermolecular contacts that probably enhance 
further folding are decreased (Fan et al., 2004). The assembly reaction of H2A.Z 
containing mononucleosomes and their stability seems to be essentially the same as for the 
canonical ones (Mazurkiewicz et al., submitted). Thus, it remains to be established for 
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other histone variants whether incorporation per se leads to an altered chromatin structure 
and if fibers consisting with nucleosome containing core and variant histones behave 
similar. Additionally it will be of interest to identify specific exchange complexes that 
catalyze the substitution of core histones with histone variants (Mizuguchi et al., 2004).  

1.1.4 Histone modifications 

The chemical modifications of histones have been observed back in the mid 1960s but the 
identification of specific enzymes catalyzing these changes and their implications in gene 
regulation has only begun to be discovered years later (Allfrey et al., 1964; Brownell and 
Allis, 1996). Up to now enzymes have been characterized that catalyze the acetylation, 
phosporylation, methylation, ubiquitination and ADP-ribosylation of histones and thereby 
regulating transcription, replication and DNA repair (Cheung et al., 2000; Fischle et al., 
2003; Grunstein, 1997; Zhang and Reinberg, 2001). Numerous amino acid residues in the 
core histone proteins have been identified that are the targets for different chemical 
modifications. The acetylation occurs at specific lysine residues, lysine and arginines are 
being methylated, threonine and serine get phosphorylated and distinct lysine residues can 
be ubiquitinated. The combinatory modifications at different histone tails have at least in 
part overlapping, redundant and complementary effects (Turner, 2002).  
Histone acetylation occurs at lysine and arginine residues in all core histone tails. The 
acetylation of specific residues in H3 and H4 have been associated with transcription and 
highly transcribed chromatin is found to be enriched in hyperacetylated histones 
(Braunstein et al., 1993; Grunstein, 1997). Consistent with these findings enzymes 
catalyzing the acetylation act generally as transcriptional activators whereas histone 
deacetylases function in the opposite manner. The inhibition of histone deacetylation in 
vivo changes chromatin structure and increases the chromatin accessibility (Fejes Tóth et 
al., 2004; Görisch et al., 2005).  
Histone methylation has been found to have different effects on gene expression. The 
histone tail of H3 can be methylated at lys 4 or lys 9. The methylation of H3K9 is 
correlated with gene repression while the methylation at H3K4 activates transcription 
(Richards and Elgin, 2002; Zhang and Reinberg, 2001). The lysine residues can become 
either mono-, di- or trimethylated. It could be shown that dimethylated H3K4 is found 
more or less uniformly throughout the genome while trimethylated H3K4 is enriched in 
the 5’ end regions of transcribed genes (Ng et al., 2003). The methylated H3K9 functions 
as an anchor and binds HP-1 and thereby facilitates chromatin condensation (Jacobs and 
Khorasanizadeh, 2002; Nielsen et al., 2002). In embryonic stem cells the trimethylated 
H3K9 is enriched in pericentromeric heterochromatin and affects HP-1 localization (Peters 
et al., 2003). Interestingly methylation at K4 prevents deacetylation and methylation of K9 
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indicating an inhibitory interplay between these two lysine residues in the same histone 
tail (Zegerman et al., 2002). Moreover, the interplay of histone methylation becomes more 
complex since it has been shown that methylation at H3K4/9 and H4K20 in combination 
recruits the activator BRAHMA and inhibits binding of repressors like HP-1 for example 
(Beisel et al., 2002). Hence, it seems that methylation of H3K9 in combination with other 
modifications might not be a marker for gene silencing but for gene activation.  
Besides this, there also exist further interactions between different chemical core histone 
modifications. The C-terminal domain of H2B gets ubiquitinated at K123 and seems to be 
essential for the methylation of H3K4 and 79 (Sun and Allis, 2002). Since nucleosomes 
are not found to be ubiquitinated and methylated extensively at the same time, the 
interplay between the two modifications is up-to-date unclear. The differences in the 
modification state could arise from different turn-over rates, as histone methylation is 
believed to be persistent for longer times (Zhang and Reinberg, 2001). Another 
explanation may be that H2B ubiquitination decondenses a longer stretch of chromatin 
thereby increasing accessibility for H3K4 methylation enzymes.  
An interesting exception of histone modification is the methylation of H3K79, which is a 
modification site not in the histone tail but in the histone fold domain. This residue is 
located at the surface of the octamer complex, thus being accessible in the nucleosome. 
Over 90% of wild-type H3K79 is methylated which occurs in a H2BK123 ubiquitination 
dependant fashion (Briggs et al., 2002; van Leeuwen et al., 2002). However, it remains 
elusive how H3K79 methylation might act in chromatin condensation and gene silencing 
as such a huge extent is methylated.  
Another modification, histone phosphorylation seems to play a role in chromosome 
condensation and segregation. The histone tail of H3 gets phosphorylated at Ser10 during 
chromosome condensation although this seems not to be the essential step. Again, the 
phosphorylation of H3S10 impedes methylation at H3K9 and vice versa, indicating 
interplay between both. As mentioned above it is also possible that the histone 
modifications act synergistically and a whole subset of modifications is needed to 
accomplish full activation or repression. The presented processes get even more 
complicated as the histone modifying enzymes can have additional targets and may exert 
multiple functions in different pathways and cellular compartments (Schreiber and 
Bernstein, 2002).  

1.1.5 Other chromosomal proteins 

Besides the diverse enzymes that mediate the covalent modification of core histones other 
factors bind to chromatin and influence the conformation of the fiber. Among these factors 
are HMG-proteins, MeCP2, HP-1 and others. The small HMG-proteins are very abundant 
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factors in the cell and act antagonistic to linker histones (Bustin, 2001; Zlatanova and van 
Holde, 1998). Despite the fact that their binding sites at the nucleosome seem not to be the 
same as the ones for the linker histones, HMG-protein and linker histone binding is 
exclusive (Alfonso et al., 1994). If HMG-proteins displace linker histones from the 
nucleosome they propagate a more open chromatin conformation (Catez et al., 2002).  
MeCP2 has been found to function in two ways on chromatin conformation (one 
enzymatic and one structural). The protein consists of two functional domains. One is a 
methyl-CpG-binding domain (MBD) and the other confers transcriptional repression 
(TRD) (Hendrich and Bird, 1998; Nan et al., 1993). Highly methylated CpG-islands are 
found in gene promotors and enhancer elements (Bird and Wolffe, 1999). It was 
previously shown that MeCP2 binds methylated DNA and is enriched in heterochromatin 
foci and pericentromeric heterochromatin (Nan et al., 1997). In addition, MeCP2 has been 
shown to interact with histone methylases and deacetylases via the TRD domain linking it 
to transcription repression (Jones et al., 1998; Nan et al., 1998). Recently, it was shown 
that MeCP2 is also capable of binding to unmethylated DNA and chromatin templates. 
Using analytical ultracentrifugation and electron microscopy it was demonstrated that 
MeCP2 condenses a defined chromatin template (Georgel et al., 2003). This condensed 
structure which is formed also under low salt conditions seems to exhibit a special 
conformation maintained by additional MeCP2-nucleosome or MeCP2-MeCP2 contacts. 
Even cleavage in the linker DNA did not resolve the condensed chromatin conformation. 
By comparing the methyl-CpG-binding domain with sequence databases four proteins 
with closely related domains have been identified (MBDs 1-4) (Hendrich and Bird, 1998). 
MBD 3 resides in the Mi2/NuRD deacetylase complex, one of the most abundant 
macromolecular complexes found in Xenonus eggs and mammalian cells (Tyler and 
Kadonaga, 1999). 
Besides MeCP2, other factors have been identified such as heterochromatin binding 
protein (HP) or polycomb proteins that bind to methylated histone tails and promote 
heterochromatin formation. In human three isoforms HP1-alpha, beta and gamma have 
been discovered. HP1 comprises a chromodomain (CD) and a chromo-shadow domain 
(CSD) (Lechner et al., 2005). The chromodomain has been shown to interact specifically 
with methylated H3K9 residues (Bannister et al., 2001; Lachner et al., 2001) (Nakayama 
et al., 2001). HP1 may therefore bind to one of the epigenetic markers that specify gene 
repression and propagate heterochromatin formation. This evokes a general mechanism by 
which gene expression is repressed through factors that bind to methylated DNA 
sequences recruit an enzymatic machinery and induce chromatin conformation 
rearrangements.  
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Additional factors that modulate chromatin conformation are small RNA transcripts, the 
so-called RNAi molecules, which are also involved in the maintenance of heterochromatic 
structures. The Xist-RNA is one of the key regulators of x-chromosome inactivation in 
female mammals (Okamoto et al., 2004). It coats the chromosome and triggers gene 
silencing in cis.  

1.2 Chromatin assembly/remodeling 

1.2.1 Histone chaperones 

The assembly of nucleosomes from DNA and core histones is strongly dependant on 
chaperone proteins since solely mixing of the components at physiological salt 
concentrations in vitro leads to the formation of insoluble protein-DNA aggregates (Daban 
and Cantor, 1982a; Daban and Cantor, 1982b). Thus the histones have to be kept in the 
cell nucleus tightly associated with histone chaperones preventing spontaneous and 
premature association with chromatin. The histone chaperones are proteins that guide the 
assembly of chromatin in an enzymatic manner as they facilitate the reaction without 
being part of the final product. Unlike “real” enzymes they do not act in catalytic amounts 
but are very abundant proteins in the cell. They comprise a protein family of different 
factors with distinct functions in vivo (Loyola and Almouzni, 2004).  
Table 1.1 summarises known histone chaperones and their putative functions in the cell. 
One of the first characterized was nucleoplasmin which was mainly studied in the 
Xenopus oocyte nucleus (Dutta et al., 2001; Laskey et al., 1978). It is associated with the 
histone H2A·H2B dimer and allows the progressive release of histones after fertilization, 
thereby ensuring nucleosome assembly during the ongoing cell divisions in early 
development (Earnshaw et al., 1980). It has been shown that nucleoplasmin participates in 
the chromatin decondensation processes probably by acting as a histone acceptor during 
histone exchange reactions (Philpott and Leno, 1992). Recently, it has been shown that it 
induces linker histone displacement from somatic and sperm Xenopus chromatin, leading 
to decondensation of chromatin (Ramos et al., 2005). The counterpart to nucleoplasmin in 
the Xenopus egg are the N1/N2 proteins which store the H3·H4 tetramers in the oocyte 
(Kleinschmidt et al., 1986). In combination with nucleoplasmin they can propagate the 
proper assembly of nucleosome complexes (Kleinschmidt et al., 1990).  
Another chaperone that has been investigated in detail is CAF-1 which consists of three 
different subunits (Smith and Stillman, 1989). CAF-1 is the major binding partner for 
newly synthesized histones H3 and H4. Like almost all other chaperones CAF-1 has 
nucleosome assembly activity in vitro. It has been shown to play a crucial role in the 
maintenance of heterochromatin silencing at telomeres (Kaufman et al., 1997). Moreover 
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CAF-1 interacts with PCNA which links it intimately to DNA replication (Gaillard et al., 
1996; Shibahara and Stillman, 1999). It has been proposed to play a crucial role during 
replication by de-novo assembly of nucleosomes on the newly synthesized DNA (Tagami 
et al., 2004; Verreault et al., 1996). However, paradoxically CAF-1 is completely 
dispensable for cell viability in Saccharomyces cerevisiae suggesting at least additional 
factors that could complement for CAF-1 function in vivo (Enomoto et al., 1997; Kaufman 
et al., 1997). The histone chaperone HIRA is also linked to nucleosome assembly in vivo. 
Unlike CAF-1 it seems to act in chromatin assembly and remodeling events independent 
of DNA replication and specific to the histone variant H3.3 (Loyola and Almouzni, 2004; 
Tagami et al., 2004).  
The major chaperone for the histone H2A·H2B dimer is NAP1, albeit it also interacts with 
the H3·H4 tetramer and can catalyze complete nucleosome formation (Ishimi et al., 1984) 
(Fejes Tóth et al., 2005; McQuibban et al., 1998);(Mazurkiewicz et al., submitted). It is the 
main transporter for histone H2A·H2B dimer from the cytoplasm to the nucleus 
(Mosammaparast et al., 2002). NAP1, which is found in the cytoplasm in the G1 and G2-
phase relocates into the nucleus during S-phase suggesting a supportive role during DNA 
replication (Ito et al., 1996a). Recently it has been linked to transcription and histone 
exchange. It has been proposed to shuttle histone H2A·H2B dimer back and forth from the 
chromatin to the RNA allowing the polymerase to progress through the nucleosomal 
substrate and proper re-assembly in the wake of transcription (Levchenko and Jackson, 
2004). NAP1 was also found as histone carrier in a sub complex of SWR1 in yeast, which 
catalyzes the exchange of the histone H2A·H2B dimer against the histone dimer variant 
H2A.Z·H2B (Mizuguchi et al., 2004). In yeast, loss of NAP1 leads to an altered gene 
expression of about 10% of the genome indicating a fundamental role also in vivo. To 
some extent it has been uncertain how NAP1 influences nucleosome structure since it has 
been shown to be sufficient in extracting and exchanging mainly a single histone 
H2A·H2B dimer at a mononucleosomal template (Kepert et al., 2005; Park et al., 2005). 
The effect on nucleosome and fiber structure on longer chromatin templates and in the 
presence of linker histones has not been clarified in detail and was therefore investigated 
in this work (Kepert et al., 2005). Surprisingly, NAP1 did not extract histone H2A·H2B 
dimer from a chromatin template but induced linker histone displacement and chromatin 
decondensation.  
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Histone 
chaperone Target histone Chaperone 

association state
Proposed functions 
in the cell Refs 

Nucleoplasmin Linker histones, 
H2A·H2B dimer 

pentamer-
decamer 

Storage of H2A·H2B in 
Xenopus oocyte for 
chromatin assembly. 
Sperm chromatin 
decondensation via linker 
histone depletion.  

(1), (2), 
(3), (4) 

N1/N2 H3·H4 tetramer unknown 
Storage of  H3·H4 in the 
Xenopus oocyte for 
chromatin assembly. 

(5), (6), 
(7) 

NAP-1 Linker histones, 
Core histones 

dimer-octamer-
hexadecamer 
equilibrium 

Nuclear transport of 
H2A·H2B, cell cycle 
regulation, shuttling of 
histones between chro-
matin and RNA during 
transcription, 
decondensation of 
chromatin through linker 
histone depletion, 
nucleosome assembly 
during replication 

(8), (9), 
(10), (11), 
(12), (13), 
(14) 

CAF-1 H3·H4 tetramer hetero-trimer replication dependant 
nucleosome assembly 

(15), (16),
(17) 

 
HIRA 
 

H3.3·H4 tetramer
 
2 Mda, heteromer 
 

replication independent 
chromatin assembly, 
essential for proper 
embryonic development 

(18), (19) 

FACT H2A·H2B dimer hetero-dimer 

Extraction of H2A·H2B 
dimer from chromatin, 
facilitates transcription 
through chromatin and 
restores nucleosomes 

(20), (21) 
(22) 

 
Rsf-1 
 

H3·H4 tetramer hetero-dimer 
Chromatin assembly 
replication independent, 
ATPase, nucleosome 
spacing 

 
(23), (24) 

 
Table 1.1. Overview of histone chaperone functions.  
References: (1):(Laskey et al., 1978), (2):(Earnshaw et al., 1980), (3):(Dutta et al., 2001), (4):(Ramos et al., 
2005), (5):(Bonner, 1975), (6): (Kleinschmidt et al., 1986), (7):(Kleinschmidt et al., 1990), (8):(Ishimi et al., 
1984),(9):(Ito et al., 1996a), (10):(Mosammaparast et al., 2001),(11):(Levchenko and Jackson, 
2004),(12):(Kepert et al., 2005),(13):(Fejes Tóth et al., 2005),(14):(Ito et al., 2000), (15):(Smith and Stillman, 
1989), (16):(Gaillard et al., 1996),(17):(Mello and Almouzni, 2001),(18): (Sherwood and Osley, 
1991),(19):(Ray-Gallet et al., 2002), (20):(Orphanides et al., 1998),(21):(Orphanides et al., 
1999),(22):(Belotserkovskaya and Reinberg, 2004),(23):(LeRoy et al., 1998),(24):(Loyola et al., 2001) 
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1.2.2 Chromatin assembly 

During S-phase the DNA content of the cell is doubled and shortly after the DNA 
synthesis newly made core histones are deposited and form nucleosome complexes 
(Worcel et al., 1978). It has been shown that during replication the pre-existing 
nucleosomes are transferred to the sister chromatids (Krude, 1999). Along with the 
replication dependent de-novo nucleosome pathway a replication independent nucleosome 
pathway exist in other cell stages (Kim et al., 1988). These pathways are likely to be 
fundamental for maintenance of chromatin states after processes like DNA repair, 
transcription or other processes that initially alter or dissolve chromatin structure. 
 It has been shown that the replication dependent process involves the activity of histone 
chaperone proteins. Most likely the newly synthesized core histones are associated with 
histone chaperones, get transferred from the cytoplasm into the nucleus and are deposited 
onto the DNA by the action of the histone chaperones. The main carriers for the core 
histones, CAF-1 and NAP1 have been introduced above. The initial step in nucleosome 
formation at the replication fork is suspected to be the deposition of a H3·H4 tetramer by 
CAF-1 (Polo and Almouzni, 2005). CAF-1 which is associated with the newly synthesized 
H3 and H4 histones in the cell and interacts with PCNA has been shown to efficiently 
assemble nucleosomes in vitro (Smith and Stillman, 1989). Despite this strong relation to 
replication and nucleosome assembly CAF-1 is completely dispensable for cell viability 
suggesting additional pathways that may substitute for CAF-1 function (Enomoto et al., 
1997; Kaufman et al., 1997; Verreault, 2000). Accordingly other factors like HIRA and 
Asaf1 have been discovered that could complement CAF-1 in nucleosome formation. 
From several studies a model that favors the initial deposition of the H3·H4 tetramer on 
the DNA followed by addition of the histone H2A·H2B dimer has been proposed (Cremisi 
et al., 1977; Mazurkiewicz et al., submitted; Senshu et al., 1978; Worcel et al., 1978).  
Yet, it has not been shown, how and guided by which histone chaperone the H2A⋅H2B 
dimer is incorporated into nucleosomes during replication. As NAP1 has been 
characterized as the main carrier for the H2A·H2B dimer in vivo and has been shown to 
also interact with the H3·H4 tetramer it is likely to be involved in processes that depend on 
nucleosome assembly or reorganization (Fejes Tóth et al., 2005; McQuibban et al., 1998; 
Mosammaparast et al., 2002). It was therefore investigated, how NAP1 facilitates 
nucleosome formation in vitro and the association kinetics of intermediate products as the 
hexasome complex during nucleosome assembly were determined (Mazurkiewicz et al., 
submitted).  
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1.2.3 Chromatin remodelers 

The in vitro reconstitution of chromatin with DNA, histones and histone chaperones 
generates templates with unregulary and short spaced nucleosomes (Ito et al., 1996b). 
Hence, the action of another class of chromatin modifying enzymes with diverse functions 
is needed to generate evenly spaced nucleosomal templates: the chromatin remodelers (Ito 
et al., 1997).  
Chromatin remodelers are compositionally and functionally diverse protein complexes 
which all share an ATP-driven motor subunit as a common motif. This subunit belongs to 
the superfamily of Snf-2 like ATPases (Eisen et al., 1995). As mentioned above chromatin 
remodelers play a crucial role in mobilizing nucleosomes and can generate well defined 
chromatin templates in in vitro reconstitution systems. They can be classified into mainly 
four subfamilies according to different structural features outside their ATPase domain 
(Becker and Horz, 2002; Lusser and Kadonaga, 2003). These are the SNF2, ISWI, CHD1 
and INO 80 subfamilies. The members of these families can be large multi-subunit 
complexes as for example the SWF-SNF complex belonging to the SNF2 subfamily or 
rather small ones like the complexes of the ISWI family. Despite carrying a common 
ATPase subunit the activity of this domain is modulated by the presence of other subunits 
and different subfamilies perform different biological functions (Fyodorov and Kadonaga, 
2002; Ito et al., 1999; Phelan et al., 1999; Xiao et al., 2001). While the remodelers of the 
SNF2 subfamily (SWF-SNF etc.) for example appear to rather disassemble chromatin 
templates and can transfer histone octamer onto a donor DNA template, the ISWI family 
form stable chromatin templates and catalyze only modest repositioning of nucleosomes 
(Aalfs et al., 2001; Imbalzano et al., 1996; Ito et al., 1997) (see details in Figure 1.3).  
The mechanism by which these enzymes can move nucleosomes along the DNA template 
has been clarified in a recent study (Strohner et al., 2005). An initially formed DNA loop 
at the entry/exit site is propagated around the nucleosome and drives the repositioning. 
The mobilization of nucleosomes is most likely a key regulative step in the initiation of 
transcription. Binding sites buried within a positioned nucleosome complex may be 
exposed to the transcription factors thereby facilitating efficient factor binding and 
transcription initiation (Korber et al., 2004; Reinke and Horz, 2003). Therefore chromatin 
remodeling at the promotor region of genes is often regarded as a permissive step during 
gene expression. Nucleosome mobilization of course is not only restricted to promotor 
regions and nearly all processes that deal with chromatin rearrangements involve the 
recruitment of chromatin remodeling complexes. As mentioned above, chromatin 
remodelers act during replication generating an even spacing of the newly assembled 
nucleosomes shortly after synthesis which seems to be essential for the successive proper 
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folding of the chromatin fiber. The remodeler Ino80.com for example comprises a DNA 
helicase activity and most probably functions in DNA repair reactions (Lusser and 
Kadonaga, 2003).  
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Figure 1.3 Overview of different chromatin remodeling specifities. Activities of the SNF2 and ISWI subfamily 
of chromatin remodelers. Different functions of these families are listed and compared. Adopted from Lusser 
and Kadonaga 2003 (Lusser and Kadonaga, 2003).  

1.2.4 Transcription through chromatin 

One of the most important processes in the cell nucleus is the process of gene expression 
which initially starts with transcription. Consequently transcription has been one of the 
most widely and intensively studied subjects in the last decades. There have been 
identified a lot of factors that initiate, facilitate elongation and terminate the processive 
ribonucleotide polymerization catalyzed by RNA polymerases (Belotserkovskaya et al., 
2004; Hahn, 2004; Ng et al., 2003).  
The mechanisms that modulate chromatin conformation have important roles in the 
regulation of transcription. All steps during transcription require specific rearrangements 
of chromatin conformation to allow proper function of the diverse factors (Hampsey and 
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Reinberg, 1999; Hartzog, 2003; Orphanides and Reinberg, 2000). Basal transcription 
factors have to gain access to their target sequences in the promotor regions, while during 
elongation the RNA polymerases have to be facilitated to transcribe through the 
nucleosomal barrier (Reinberg et al., 1998). Here the contributions of two factors that are 
involved in gene regulation by modulation of chromatin conformation were investigated: 
the linker histone H1 and the histone chaperone NAP1.  
The effect of linker histone binding and its implications to transcriptional regulation has 
been reviewed already in a preceding chapter. A new feature investigated about H1 in this 
study is its interaction with the histone chaperone NAP1 and their potential implications in 
transcription. As the binding of H1 has been attributed to gene repression any alterations 
in the binding properties of H1 to chromatin may influence gene expression patterns. The 
RNA polymerase has been shown to effectively disrupt a nucleosomal template while 
polymerizing the RNA from the DNA template (ten Heggeler-Bordier et al., 1995). It has 
been proposed that histone chaperones assists the transcriptional machinery during 
elongation and retain nucleosome integrity after transcription. Early studies reported a 
depletion of histone H2A·H2B dimer in transcriptional active regions (Baer and Rhodes, 
1983; Bazett-Jones et al., 1996). Recently, the FACT complex was found in HeLa cells 
that mediated the extraction of H2A·H2B dimer from chromatin during transcription 
elongation thereby allowing the RNA polymerase to proceed through the nucleosomal 
template (Belotserkovskaya et al., 2003; Orphanides et al., 1998; Orphanides et al., 1999). 
Additionally FACT reorganizes intact nucleosomes after transcription restoring proper 
epigenetic information. As NAP1 also has high affinity to the H2A·H2B dimer and has 
been proposed to shuttle it back and forth between chromatin and RNA it could also 
facilitate transcription through chromatin (Figure 1.4) (Levchenko and Jackson, 2004). 
The question has been raised if NAP1 alone is sufficient in extracting histone dimer from a 
chromatin template in a fashion similar to FACT (Park et al., 2005). In the here presented 
study it was found that NAP1 is indeed not capable of extracting histone H2A·H2B dimer 
from chromatin but induces the displacement of linker histone H1 (Kepert et al., 2005). 
Thus the extraction and exchange of histone H2A·H2B dimer from a chromatin template is 
dependant on additional nucleosome destabilizing events, induced by chromatin 
remodeling events as for example through transcription by the RNA polymerase itself.  
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Figure 1.4 Transcription through chromatin. (A) The RNA polymerase proceeds via transcribing through a 
nucleosomal template. In front of the polymerase the chromatin structure opens up also facilitated through 
NAP1 induced linker histone depletion. Nucleosomal structure is altered during transcription and one histone 
H2A·H2B dimer is transferred from the octameric core complex. In the wake of the polymerase intact 
octameric nucleosome complexes are reformed. Scheme adopted and amended from Studitsky et al. 
(Studitsky et al., 2004) (B) Detailed scheme for NAP1 induced shuttling of H2A·H2B dimer between chromatin 
and the nascent RNA chain during transcription. NAP1 facilitates in extracting histone H2A·H2B dimer from 
the nucleosome. Once the dimer has been extracted it can be transferred to the RNA allowing NAP1 to act in 
substoichiometric amounts. After the polymerase has passed through the hexasome the H2A·H2B dimer is 
transferred to chromatin. Adopted from Levchenko et al. (Levchenko and Jackson, 2004). 
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1.3 Objectives of this work 

The organization and maintenance of chromatin structure in the cell nucleus is a central 
parameter for the proper regulation of gene expression. Linker histones and histone 
chaperones are among the key components that define higher order chromatin structure 
and its dynamic reorganization. In this work these components and their implications on 
chromatin conformation was characterized in detail.  
In a first set of experiments important structural parameters for the chromatin fiber folding 
were determined with high resolution SFM studies on recombinant mononucleosome 
complexes. In particular, the effects of linker histone H1 binding on the DNA geometry at 
the nucleosome complex was addressed. The linker histones were proposed to constrain 
the DNA at the entry/exit site of the nucleosome, thereby facilitating the condensation of 
the chromatin fiber. The results provided a low resolution model for the interaction of H1 
with the linker DNA.  
Hence, in a second step the DNA binding behaviour of H1 was further characterized and a 
molecular model for the interaction with the linker DNA was developed. To derive such a 
model, hydrodynamic measurements were combined with computer based modelling 
techniques. Based on an previous structure of the chromatosome complex the experimental 
results were combined with a recent X-ray structure of a tetranucleosomal particle to 
develop an improved model with atomic resolution for the chromatosome.  
The third part of the work evaluated the dynamic interaction of the histone chaperone 
NAP1 with  chromatin. It has been proposed that NAP1 is the main carrier for the 
H2A·H2B dimer and facilitates processes like transcription and histone exchange. 
However, also interactions with the linker histone H1 had been postulated. Therefore, it 
was analyzed how this chaperone can influence the chromatin fiber conformation and its 
interaction partners were identified. By determining the effects of NAP1 on chromatin 
composition and structure it was assessed how NAP1 contributes to the processes of 
transcription and histone exchange. 
In summary, a detailed model for the action of H1 in the condensation of the chromatin 
fiber was established and the dynamic interaction of the histone proteins with the 
chaperone NAP1 were elucidated. The work provides further insight into the role of NAP1 
mediated chromatin organization in relation to important processes like transcription and 
histone exchange. 
. 
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2. Visualization and quantification of chromatin conformation 
changes 

In this chapter a short summary of biochemical and biophysical methods applied in my 
work is briefly introduced. 

2.1 Biochemical approaches to examine chromatin/nucleosome structure 

When interpreting studies on chromatin structure one first has to consider which 
experimental set-up in the individual studies has been used. Earlier investigations mostly 
examined chromatin and histone components from “native” sources as for example 
chicken blood or thymus glands. In the recent years recombinant histones have been 
available, which lack any post translational modifications typically found in native core 
histones (Luger et al., 1997b). These recombinant histones offer the possibility to study the 
influence of histone modifications or additional factors on the nucleosome structure in a 
defined system. 
 Besides the source of histone proteins, the choice of DNA substrates used for the analysis 
of chromatin structure is also important. Chromatin folding has been often exemplary 
studied with nucleosomal array systems carrying strong nucleosome positioning signals 
and confer even and discrete nucleosome spacing. These array systems can constitute a 
very defined system, which mimics the basic principles in chromatin folding. However, 
these systems are restricted to only short template lengths (up to 12 nucleosomes mostly) 
and the strong positioning signals confer very stable nucleosome complexes, which 
prevents the analysis of folding steps only occurring on longer chromatin templates. The in 
vitro reconstitution of longer chromatin templates with recombinant histones results in the 
formation of highly condensed chromatin templates different from native fibers (Fejes 
Tóth, 2004). Another possibility is therefore the purification of chromatin fibers from cell 
culture tissue. These fibers are not well defined in composition and display structural 
heterogeneity. Their advantage lies in the presence of native sequences, no artificial strong 
positioning signals and their length which far exceeds the 12-mer arrays normally 
available. Additionally, these fibers contain more of the modifications and components 
needed to maintain native chromatin structure. In this study, a combination of these 
systems has been used. Recombinant mononucleosomes were investigated to clarify the 
contribution of linker histone binding on the nucleosome structure. Native chromatin 
fragments from HeLa cells were purified to elucidate the effect of linker histones and 
NAP1 on longer “natural” chromatin templates.  
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2.1.1 In vitro mononucleosome reconstitution 

Recombinant histone proteins can be over-expressed in E. coli cells and further purified 
(Kepert et al., 2003; Luger et al., 1997b). To analyze the effect of linker histone binding, 
mononucleosome complexes were reconstituted with a salt dialysis method. Core histones 
and DNA were mixed at 2 M monovalent salt and subsequently slowly dialyzed against a 
low salt buffer, typically containing a 50 mM monovalent salt concentration. This 
procedure reconstitutes intact nucleosome complexes and prevents the formation of 
insoluble DNA-histone aggregates which occur when the components are directly mixed at 
physiological salt conditions (Daban and Cantor, 1982a; Daban and Cantor, 1982b).  

2.1.2 Isolation of native chromatin fibers 

To investigate the effects of the linker histone and NAP1 on longer chromatin templates, 
fibers from HeLa cells were purified. First, cell nuclei were extracted and by using an 
appropriate concentration of MNase during further digestion reactions defined chromatin 
fragments can be obtained from these nuclei. Besides the core histones, linker histones and 
many other additional factors are present in such a chromatin preparation. Linker histone 
depleted fibers were obtained from these substrates by raising the ionic strength and 
subsequent anion exchange chromatography. The integrity of the prepared chromatin was 
checked by MNase digestions revealing the regular spacing of nucleosomes characteristic 
for native chromatin.  
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Figure 2.1 Biochemical characterization of isolated HeLa 
chromatin. (A) Partial MNase digestion of isolated chromatin 
showing regular nucleosome spacing. A repeat length of ~200 
bp is apparent according to earlier observations (van Holde, 
1989). (B) SDS-Page of native and linker histone stripped 
HeLa chromatin. Besides the core and linker histones 
additional not determined protein bands are visible in the 
prepared samples.  
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2.1.3 Fluorescence labeling of histone proteins and analysis of nucleosome structure 

Fluorescence labeling of histone proteins allows to selectively monitor the distribution of 
these tagged proteins during nucleosome assembly and their binding to diverse interaction 
partners (RNA, NAP1 etc.). In this study either fluorescently tagged H2A or H1 proteins 
were used. By labeling with a tetrafluorophenyl ester at pH 8.0 it is possible to selectively 
label proteins at the N-terminal amino group of the protein. This has been applied here for 
histone H1 preventing functional deletions through labeling randomly internal amino 
groups. Nucleosome complexes with fluorescently labeled H2A were reconstituted and the 
redistribution of the H2A·H2B dimer was visualized on agarose gels (Kepert et al., 2005). 
Thus, it was possible to monitor the extraction of histone H2A·H2B dimer from a 
nucleosome complex upon incubation with NAP1 or RNA. The relative affinities of NAP1 
for histone H2A·H2B dimer and histone H1 were initially compared on standard agarose 
gels (Fig 2.2). Further AUC experiments allowed the analysis of the association states of 
NAP1 and linker histone H1. 
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Figure 2.2 Gel shift analysis of H1f and H2Ar·H2B 

binding to NAP1. A saturated NAP1-H2Ar·H2B dimer 
complex was titrated with increasing amounts of labeled 
H1f (lane 2-7, r = labeled with Alexa633, f = labeled with 
Alexa488). (A) Fluorescence signal of histone H1f. 
Increasing amounts of H1f are titrated to a NAP1- 
H2Ar·H2B dimer complex and forms a complex with 
either free NAP1 or NAP1 bound to the H2Ar·H2B dimer. 
Last lane: a saturated NAP1-H1f complex. (B) 
Fluorescence signal of the NAP1- H2Ar·H2B dimer 
complex. (C) Merge of the two signals  
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2.2 Analytical Ultracentrifugation 

Analytical Ultracentrifugation (AUC) monitors the distribution of particles in a centrifugal 
field to determine the hydrodynamic parameters of proteins and chromatin samples. The 
method allows it to characterize for example protein-DNA interactions as well as the 
multimerisation of proteins (Demeler and van Holde, 2004; Philo, 2000; Schuck, 2003). 
With AUC, one can distinguish the different association states and define binding 
constants for protein-protein or protein-DNA interactions (Carruthers et al., 2000; Schuck 
et al., 2001; van Holde and Rossetti, 1967; van Holde and Weischet, 1978). Additionally 
the technique proved to be a valuable tool in the investigation of chromatin structure 
(Ausio, 2000a; Carruthers et al., 1998; Dorigo et al., 2003; Hansen, 2002; Hansen and 
Turgeon, 1999; Schwarz and Hansen, 1994). This is due to the sensitivity of sedimentation 
coefficients not only for weight but also for the shape of the particles under investigation. 
Thus, it is possible to compare decondensed and highly compacted chromatin 
conformations in a real solution based system.  
The hydrodynamic parameters are derived from the sedimentation behaviour of the 
sample, which is monitored by the absorption profile during centrifugation. Through the 
use of a monochromator different wavelength measurements can be obtained during one 
experimental run. Thus, by tagging proteins or DNA specifically with fluorescent dyes, 
single components can be selectively studied in AUC experiments. The AUC also offers 
the possibility to quantify a whole subset of molecules in physiological buffer solutions 
but under defined conditions. This can refine experimental results from non-solution based 
gel shift analysis significantly (Kepert et al., submitted). Two different experiments can be 
conducted in the AUC in principle: sedimentation equilibrium and sedimentation velocity 
experiments, which give complementary information on the molecular shape and 
molecular weight of the sample.  
 

2.2.1 Sedimentation velocity measurements 

During sedimentation velocity experiments the sample is sedimented from the meniscus to 
the bottom of the cell at a relatively high speed (Fig 2.3A). The sedimentation of the 
sample to the bottom of the cell can be visualized by absorbance scans over time. A 
moving boundary forms during the run, which can be used to derive the hydrodynamic 
parameters of the sedimenting species. Due to diffusion, the sample moves not as a sharp 
band but gets broadened (Fig 2.3A). Thus it is possible to derive a sedimentation and 
diffusion coefficient during the sedimentation velocity experiments. The velocity of the 
boundary is directly proportional to the molecular weight of the absorbing species and 
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indirect proportional to the frictional coefficient which reflects the molecular shape of the 
particle. The sedimentation also depends on the density and viscosity of the buffer. 
Equation 1 gives the relationship between the sedimentation coefficient and these 
variables:  
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where M is the molecular weight, 

−

ν  is the partial specific volume of the sample, ρ is the 
buffer density, NA the Avogadro number, f the frictional coefficient, v  the velocity of the 
moving band,  the centrifugal acceleration and s the sedimentation coefficient. The 
changes of the concentration distribution during the sedimentation process can be 
described by the Lamm equation: 
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As no general analytical solution to this equation exists several new software packages 
make it possible to numerically describe the sedimentation process and allow thereby the 
computation of the hydrodynamic coefficients. Besides these numerically based 
approaches other methods of analysis describe the sedimentation behavior with an 
analytical approximation to the Lamm equation by simplification of some of the 
parameters. Hence, nowadays a combination of the methods can be used in dependence on 
the purpose and focus of the investigation.  Two of these analysis techniques were used 
here to analyze the DNA binding pattern of linker histone H1 to short DNA duplexes and 
the effect of NAP 1 on  chromatin conformation (Kepert et al., submitted; Kepert et al., 
2005). 

2.2.2 Sedimentation equilibrium measurements 

With sedimentation equilibrium experiments the molecular weight distribution of a sample 
can be determined very precisely. In contrast to velocity experiments the sample is spun 
with moderate speeds  so that it does not sediment over time to the cell bottom. When the 
chosen speed is appropriate a constant concentration gradient is formed which is the 
equilibration product of sedimentation due to the centrifugation force and diffusion against 
the forming concentration gradient (Figure 2.3). Once equilibrium is reached, the formed 
concentration gradient is determined solely by the molecular weight of the particle.  
The concentration of particles increases with the distance r from the rotor midpoint. The 
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different positions from the rotor center can be understood as different occupied energetic 
states. The transitions between these states are characterized by the work that is needed to 
move a particle between different radial positions. The effective mass for the particle has 
to be taken into account which is given by Meff = M ⋅(1-ν ⋅ρ). From this the concentration 
distribution, described by the absorbance, in dependance of the radial positions is 
calculated according to eq.3: 
 
                                                                                                            (eq.  3)     
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 Ar and A0 are the absorption at the distances r and 0, M the molecular weight, ω the 
centrifugal acceleration and E the absorption of the baseline after sample depletion. This 
describes the absorption profile for a single species in a sedimentation equilibrium 
experiment. Two or more non-interacting particles expand the equation to a sum of two or 
more expressions as in the eq. 4: 
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A wide variety of models can be fitted to the experimental data with the available software 
packages, which can be used to identify the molecular association states or binding 
constants for each system being investigated. The combination of sedimentation velocity 
and equilibrium experiments allows a reliable description of inter- and intramolecular 
interactions. Analytical ultracentrifugation experiments afford commonly high protein or 
DNA concentrations in the µM range. New advancements with fluorescence 
ultracentrifugation will allow measurements down to the nM concentration level, reducing 
the amount of material needed and thereby expanding the possibility to investigate 
reactions with binding constants in the nM range.  
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Figure 2.3 Sedimentation equilibrium and velocity experiments. (A) Sedimentation velocity experiment of 
NAP1-H1f complexes. The sample was measured at 494 nm and radial scans were taken at 37000 rpm, in the 
continuous scan mode, at 20° C and with 0.003 cm radial step size. Every forth scan is shown. The 
sample/boundary moves with time from the meniscus to the bottom of the cell. The band gets also broadened 
at later time points reflecting the diffusion of the sample during sedimentation. (B) Sedimentation equilibrium 
experiment of the same sample shown in (A). Three different equilibrium scans at 5000, 7000 and 10000 rpm 
are shown. Each scan is taken after centrifugation for 28 h at the different speeds.  A monomer-tetramer 
model is fitted to the data points and is shown with solid lines. 

2.3 Scanning force microscopy (SFM) 

SFM technique has proven to be a reliable tool in the investigation of chromatin and DNA 
structures (Bash et al., 2003; Fritzsche et al., 1995; Kepert et al., 2003; Leuba et al., 1994; 
Rivetti et al., 1996; Schulz et al., 1998; Wyman et al., 1995). About ten years ago the first 
images of chromatin fibers have been recorded with a SFM microscope (Zlatanova et al., 
1994). Along with high resolution imaging of native chromatin, conformation changes of 
fibers can be detected in a physiological buffer solution (Bustamante et al., 1997). The 
schematic function of a scanning force microscope is shown in Figure 2.4. A laser beam is 
focused via a cantilever, to which an ultra fine silicon or silicon nitride tip is tethered, onto 
a four-quadrant photo diode (Figure 2.4 and 2.5). During the initial adjustment steps the 
cantilever is excited through a piezo-element near the resonance frequency of the 
cantilever. This forces the cantilever to oscillate with an amplitude that can be regulated 
by the voltage that is applied to the piezo-element. Through the oscillation of the 
cantilever the laser beam also swings in the photo-diode. This oscillation is focused in the 
middle of the photo-diode during the calibration setting and marks the reference for the 
free amplitude. The microscope offers the possibility to measure in two different operation 
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modes: the tapping and contact mode. During the tapping mode the cantilever is 
approached to the sample surface by another piezo-element beneath the sample holder. 
While the sample approaches to the tip the oscillation gets damped due to interactions with 
the surface. These interactions can be characterized in a simple case for a two atomic 
system by the Lennart-Jones potential. At longer distances the tip gets attracted by van der 
Waals interactions, which range over the distance of hundreds of angstroms. The repulsive 
interactions at smaller distances are mainly due to the Pauli principle. Most biological 
substrates are scanned in the tapping mode minimizing the interactions of the sample with 
the tip. No direct contact between the tip and the sample is needed. A ~70 % reduced 
amplitude signal is used as the regulatory parameter at which the sample gets retracted 
from the tip and the original distance is restored. The tip that scans over the surface and 
records a topographic image. Thus DNA, chromatin or other biological samples can be 
visualized in a three-dimensional image when deposited on a very smooth surface (Figure 
2.6). A commonly used substance for the generation of such surfaces is mica. It can be 
cleaved to produce very even crowns with a mean roughness below 1 nm. The resolution 
of the imaging mostly depends on the geometry of the scanning tip, which is limited by the 
opening radius (Figure 2.5). As depicted in Figure 2.5 every object gets at least broadened 
by twice the radius of the tip. The typical radii for commercial silicon tips range between 
5-10 nm. Therefore, for example a DNA molecule deposited on mica which is in reality ~2 
nm broad appears minimally as a 10 nm thick structure. 
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Figure 2.4 Schematic illustration of the SFM. (A) Illustration of the experimental set-up of a conventional SFM 
microscope. A laser beam focused on the cantilever is targeted via a mirror into the photo-diode. The 
cantilever is inserted in the fluid cell which is sealed with a silicon O-ring to avoid cell leakage. The buffer 
solution can be exchanged in a defined manner. (B) Lateral resolution of the SFM tip. The tip oscillates over 
the surface and “contacts” objects that protrude from the surface. The real dimensions get broadened due to 
the given geometry of the tip.  
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Figure 2.5 Commercial available etched silicon probe for 
AFM tapping mode. High magnification of an ultra sharp 
RTESP-probe from Veeco-Europe. The opening radius for 
the tip is typically below 10 nm. The resonance frequency is 
around 300 kHz. 

 
 
 
One major advantage of the SFM technique is the possibility to image biological samples 
in the fluid cell under physiological buffer solution, allowing real-time visualization of 
fluctuations in chromatin conformation. Using this method the change in shape of a 
nucleosomal array due to different salt concentrations was visualized (see Figure 2.7). 
Additionally the effect of linker histone H1 in stabilizing a more compact chromatin 
structure could be determined with this approach (Figure 2.7). 
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Figure 2.6 SFM imaging of HeLa chromatin. (A) Air dried sample of a chromatin fiber isolated from HeLa cells. 
The Nucleosomes of the fiber are arranged during the depositioning on the surface. Mostly a single layer of 
nucleosomes is present. (B) Image of a chromatin fragment isolated from HeLa cells that have been treated 
with TSA (unpublished data). This causes the hyperacetylation of core histone tails and chromatin  
decondensation (Heuvelman, Kepert, Rippe in preparation).    
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Figure 2.7 Visualization of chromatin conformation changes. (A-C) Salt dependant decondensation of a 
nucleosomal array. A circular plasmid was reconstituted with drosophila core histones by salt dialysis to form a 
chromatin template. Under starting conditions (10 mM Hepes pH 8.0, 50 mM KCl) it is bound to the surface 
and adopts a closed conformation (A). Upon buffer exchange against 10 mM Hepes pH 8.0 the array 
decondenses and adopts a highly mobile conformation that is partly detached from the surface (B). After an 
additional buffer exchange against 10 mM Hepes, 50 mM KCl the array condenses again and binds to the 
surface (C). (D-F) Linker histone H1 stabilizes a more condensed array conformation. The same nucleosomal 
template as in the first three panels is bound to the mica surface and detaches upon reduction of the salt 
concentration (D-E). A solution of linker histone H1 is added to the fluid cell and the arrays partly reassociate 
to the surface reflecting the condensation of the arrays (F). (G-I) Schematic drawing of changes in  
conformation of the nucleosomal template and its binding to the mica surface.   
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2.4 Molecular modelling and hydrodynamic simulations 

To derive the atomic model of a biological structure the most precise method is the 
structural determination by X-ray crystallography (van Holde et al., 1998). However, the 
crystallisation of biological samples is often not possible due to problems during the 
crystallisation process itself. An alternative approach is the prediction of protein folding 
from comparison with proteins or protein domains where the structure is known. For this 
purpose, nowadays powerful software tools are available that enable the user to evaluate 
structural properties of the complexes under investigation. As a starting point a previously 
resolved structure can be taken that can then be refined or amended with molecular 
modelling techniques. 
The atomic coordinates for numerous DNA-protein complexes can be obtained from 
online protein data banks. Rearrangements and molecular modelling of given structures is 
then conducted with a variety of software packages as for example the vmd graphics 
viewer (Humphrey et al., 1996), pymol (http://pymol.sourceforge.net/) or the Sybyl7.1 
software (http://www.tripos.com/). If a protein domain has not been experimentally 
resolved yet a structural homology search helps to identify related sequences for which 
structural data are available (Kelley et al., 2000). If the sequence identity exceeds 25% a 
protein structure with atomic resolution can be derived by homology alignment. Once the 
generated structures have been fit to the experimental data, the interactions and contacts 
established are optimized with an energy minimisation software package. This software 
computes the energy for a given molecule by calculating the internal or bonded terms, 
which describe the bonds, angles and bond rotation in a molecule. An additional external 
term accounts for the interactions between non bonded atoms. This includes electrostatic 
and van der Waals interactions. The energy for the sum of those numerical force fields is 
then minimized to generate a most favorable conformation. Limitations are given by the 
fact that within these force fields no bonds can be broken and rearranged. It has also to be 
taken into account that the potential energy minimum has to be expanded for entropic 
effects to assure that the thermodynamic equilibrium is reached.  
Once the atomic coordinates of the minimised structure have been obtained they can be 
used to calculate hydrodynamic parameters like sedimentation and diffusion coefficients. 
To this end the atomic model is approximated by a bead model that is initially computed 
by the software HYDRPRO from the given pdb coordinates  (Figure 2.8) (Garcia de la 
Torre, http://leonardo.fcu.um.es/macromol/).  
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The idea is that for a simple molecule like a sphere the frictional coefficient can be 
computed according to eq. 5: 
 
 
                                                                  rfshell ⋅⋅⋅= ηπ6                            eq.5 
 
In this expression f is the frictional coefficient, η the viscosity of the solvent and r the 
radius of the sphere. According to Kirkwood the frictional coefficient of a structure with n 
spheres can then be calculated with eq. 6 (ref): 
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In equation 6, Rij is the distance between the midpoints of two spheres. If the frictional 
coefficient is determined the hydrodynamic parameters can be calculated with the 
equations 7 and 8, 
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where D is the diffusion and s the sedimentation coefficient. In this way the hydrodynamic 
parameters for the generated structures are obtained and help to select a model that fits 
best to the experimental results (Figure 2.9). 

 
 
 

 
Figure 2.8. Shell model of H1 bound to two 
DNA duplexes. A bead structure was derived 
from the pdb coordinates with the Hydropro 
software package and used for the calculation 
of theoretical hydrodynamic parameter 
(Kepert et al., submitted). 
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Figure 2.9 Remodelling of a chromatosome complex. (A) Structure of the dinucleosomal particle published by 
Schalch et al. (Schalch et al., 2005).One linker DNA strand is straight while the other is bent approximately in 
the mid between the nucleosomes.(B) and (C) Energy minimized structures of a chromatosome complex. One 
nucleosome core complex with linker DNA was taken from the dinucleosome structure. Full length histone 
H1d was superimposed and linker DNA contacts were adopted from the initial proposal from Bharat et al. 
(Bharath et al., 2003).The linker histone is positioned symmetrically on the nucleosome core. The DNA 
contacts formed by the winged helix  and the C-terminal domain confer asymmetric linker DNA protection. 
Again one DNA duplex seems to leave the nucleosome straight. The C-terminal domain of H1 introduces a 
sharp bending of the other DNA  linker subsequently introducing a angle of roughly 70^. 
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Summary 

The compactions of the 30 nm fiber due to linker histone binding is an important 
regulatory step in chromatin dependent processes like transcription, DNA repair or 
replication. The determination and characterization of different chromatin conformations 
and the dynamic changes induced by protein factors are essential to understand the 
regulatory mechanisms involved. In this study the dynamic effects of linker histone H1 
and histone chaperone NAP1 on the nucleosome core composition and on the 
conformation of native chromatin fiber fragments were investigated in detail. 
First, high resolution SFM imaging of recombinant mononucleosome complexes was used 
to determine important structural parameters that are modulated by H1. It was found that 
the angle between the DNA exiting and entering the nucleosome was decreased upon 
linker histone binding. Furthermore the ability of assembled mononucleosome complexes 
to change their position along the DNA strand was significantly reduced by H1 
incorporation.  
Second, the interaction of H1 with DNA was characterised to elucidate the above changes 
on the molecular level. Analytical ultracentrifugation results and biochemical data 
identified two strong DNA binding sites on full length histone H1. Based on these data and 
previous results in conjunction with computer based homology modelling a structure of 
the chromatosome complex was built. The linker histone was positioned symmetrically at 
the nucleosome core in a manner that is consistent with most of the experimental data. The 
resulting molecular model provides a starting point for computational modelling of longer 
fibers and the evaluation of structural changes in chromatin upon linker histone binding. 
Third, the influence of histone chaperone NAP1 on chromatin and nucleosome structure 
was determined. NAP1 is involved in the assembly of proper nucleosome complexes. It 
formed a hexameric intermediate complex during assembly, that seems to be also 
important during transcription through chromatin. Furthermore, the ability of NAP1 to 
interact with the linker histone and its contribution on chromatin fiber conformation was 
evaluated. The addition of NAP1 induced a reversible extraction of linker histones in 
chromatin, which leads to a decondensed and more open fiber structure. In contrast to 
previously proposed models it was found that NAP1 alone was not sufficient to 
extract/exchange histone H2A·H2B dimer in the context of native chromatin fibers. 
In summary, the results obtained here identify the interconnected association properties of 
linker histone H1 and histone chaperone NAP1 as important parameter that can induce a 
more accessible chromatin conformation. 
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Zusammenfassung 

Die Kompaktierung der 30 nm Faser durch Bindung von Linkerhiston H1 ist ein wichtiger, 
regulatorischer Schritt in chromatinabhängigen Prozessen wie Transkription, DNA-
Reparatur und Replikation. Die Bestimmung und Charakterisierung von unterschiedlichen 
Chromatinkonformationen und den dynamischen Veränderungen, die von Proteinfaktoren 
eingeleitet werden, sind zum Verständnis der regulatorischen Mechanismen essentiell. In 
dieser Arbeit wurden die dynamischen Effekte des Linkerhistons H1 und des 
Histonchaperons NAP1 auf die Nukleosomzusammensetzung, sowie auf die Konformation 
nativer Chromatinfasern detailliert untersucht. 
Erstens wurde hochauflösende Rasterkraftmikroskopie an rekombinanten Mononukleo-
somenkomplexen verwendet, um wichtige Strukturparameter zu bestimmen, die durch H1 
verändert werden. Es konnte gezeigt werden, dass der Winkel zwischen ein- und 
austretendem DNA-Strang durch die Bindung von H1 verringert wird.  Außerdem wurde 
durch den Einbau von H1 die Fähigkeit von assemblierten Mononukleosomkomplexen 
stark eingeschränkt, ihre Position auf dem DNA-Strang zu verändern.   
Zweitens wurde die Interaktion zwischen H1 und DNA charakterisiert, um die zuvor 
gefundenen Veränderungen auf molekularer Ebene zu erklären. Mit Hilfe analytischer 
Ultrazentrifugationsergebnisse und biochemische Daten wurden zwei starke DNA-
Bindungsstellen auf dem vollständigen H1 Protein identifiziert. Anhand dieser Daten und 
früherer Ergebnisse konnte mittels Computer gestützten Homologiemodellierungen eine 
Chromatosomstruktur zusammengesetzt werden. Das Linkerhiston wurde so symmetrisch 
an den Nukleosomenkern gesetzt, dass die Struktur mit den meisten experimentellen Daten 
übereinstimmte. Das resultierende molekulare Modell schafft die Voraussetzungen für die 
Modellierung langer Fasern und die Bestimmung struktureller Veränderungen des 
Chromatins, die durch H1-Bindung vermittelt werden. 
Drittens wurde der Einfluss des Histonchaperons NAP1 auf die Chromatin- und 
Nukleosomstruktur bestimmt. Dazu wurde zunächst die NAP1-induzierte Modellierung 
von Nukleosomenkomplexen über einen hexameren Histonkomplex charakterisiert, der 
auch während der Transkription durch Chromatin eine Rolle spielen soll. Im weiteren 
wurde die Fähigkeit von NAP1 mit Linkerhiston zu interagieren untersucht und dessen 
Einfluss auf die Chromatinkonformation zu bestimmen. Die Zugabe von NAP1 induzierte 
eine reversible Dissoziation von H1, die zu einer weniger kompakten und offeneren 
Faserstruktur führte. Im Gegensatz zu früher vorgeschlagenen Modellen war NAP1 nicht 
in der Lage, Histon H2A·H2B Dimer an nativen Chromatinfasern auszutauschen. 
Anhand der hier erzielten Ergebnisse konnten die wechselseitigen Interaktionen zwischen 
Linkerhiston H1 und Histonchaperon NAP1 als wichtiger Parameter bestimmt werden, die 
eine offenere und zugänglichere Chromatinkonformation auslösen können. 
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