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• Parallel occurrence of
resistance mechanisms,
including preexisting
epigenetic profiles and
converging adaptation
patterns across
subclones.

• Subclone-specific
interactions of
myeloma and bone
marrow micro-
environment cells.
Intratumor heterogeneity as a clinical challenge becomes most evident after several
treatment lines, when multidrug-resistant subclones accumulate. To address this chal-
lenge, the characterization of resistance mechanisms at the subclonal level is key to
identify common vulnerabilities. In this study, we integrate whole-genome sequencing,
single-cell (sc) transcriptomics (scRNA sequencing), and chromatin accessibility (scATAC
sequencing) together with mitochondrial DNA mutations to define subclonal architec-
ture and evolution for longitudinal samples from 15 patients with relapsed or refractory
multiple myeloma. We assess transcriptomic and epigenomic changes to resolve the
multifactorial nature of therapy resistance and relate it to the parallel occurrence of
different mechanisms: (1) preexisting epigenetic profiles of subclones associated with
survival advantages, (2) converging phenotypic adaptation of genetically distinct sub-
clones, and (3) subclone-specific interactions of myeloma and bone marrow microenvi-
ronment cells. Our study showcases how an integrative multiomics analysis can be
applied to track and characterize distinct multidrug-resistant subclones over time for the identification of molecular
targets against them.
Introduction
Intratumor heterogeneity arising from genetically distinct sub-
clones as well as their adaptation and evolution during treat-
ment is the main source of therapy resistance.1 A paradigm
disease for this process is multiple myeloma (MM), which is
characterized by the clonal expansion of malignant plasma cells
(PCs) in the bone marrow (BM).2-5 MM intratumor heterogeneity
as a clinical challenge becomes most evident during the course
of several lines of treatment, when various resistance mecha-
nisms accumulate.6 With the recent introduction of novel tar-
geted immunotherapies7 for heavily pretreated relapsed or
refractory MM (RRMM), the identification of common vulnera-
bilities of distinct multidrug-resistant subclones emerges as an
urgent unmet need in the field. Toward this goal, MM sub-
clones have been defined using single-cell RNA-sequencing
(scRNA-seq) through the analysis of copy number aberrations
(CNAs)8 and transcriptional clusters.9 Furthermore, mitochon-
drial DNA (mtDNA) mutations called from sc chromatin acces-
sibility (scATAC-seq) data have been exploited to dissect and
trace subclones in other hematologic malignancies.10-12 At the
same time, genomic,13-17 transcriptomic,9,18-20 or epigenetic19

sequencing readouts revealed molecular mechanisms that
govern the treatment response in MM. Moreover, scRNA-seq
methods provided information on the interplay of MM cells
with their BM microenvironment (BME), which have been shown
to be an essential part of the disease phenotype.6,8,21 However,
despite these advancements, it remains challenging to address
the multifactorial nature of therapy resistance. Recent studies
defined subclones based on a single readout and, therefore,
focused only on individual aspects of molecular resistance. As
such, it is not clear to what extend different resistance mecha-
nisms can occur in combination in the same subclone and
change during treatment.
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In this study, we profiled serially collected BM samples from
patients with RRMM using a multiomics approach that com-
bines scRNA-seq, scATAC-seq, and bulk whole-genome
sequencing (WGS) as well as bulk RNA-seq data. We show
how copy number information from WGS and both sc modal-
ities together with mtDNA mutations can be integrated to
define subclones and their ancestral relationships at high res-
olution. Based on our matched transcriptome and epigenome
analysis of individual subclones, we simultaneously address
various layers of resistance, and specifically, we relate resistance
to (1) subclones with preexisting epigenetic profiles that are
associated with survival advantages, (2) converging phenotypic
adaptation of genetically distinct subclones, and (3) subclone-
specific interactions of MM and BME cells. From our analysis,
it is apparent that multifactorial subclonal resistance mecha-
nisms can occur in parallel, which has a number of implications
for the development of strategies that target shared vulnera-
bilities across individual subclones.

Methods
Study cohort
Patient samples and related clinical information from both male
(n = 7) and female (n = 8) patients with RRMM were obtained
after written informed consent and in accordance with the
Declaration of Helsinki. The study was approved by the ethics
committee of the Medical Faculty at the University of Heidel-
berg (#S206/2011v13).

scRNA or ATAC-seq
Viably frozen CD138+-enriched or CD138+-depleted BM
mononuclear cells were thawed at 37◦C, resuspended in RPMI
with 10% fetal bovine serum, and washed in cold phosphate-
buffered saline, with cells being collected via centrifugation at
500g for 5 minutes. scRNA-seq was performed according to the
Chromium Single Cell 3ʹ Reagent Kit version 2 user guide (10x
Genomics). Generated gene expression libraries were pooled
and paired-end sequenced (26 bp and 74 bp) on an Illumina
NovaSeq 6000 S2. For scATAC-seq, cell pellets were carefully
resuspended in an ice-cold NP-40 lysis buffer and spun down
immediately. Nuclei were resuspended in the nuclei buffer
provided by 10x Genomics, counted and subjected to Tn5
tagmentation. The subsequent steps were performed accord-
ing to the manufacturer’s instructions for the 10x Genomics
Single Cell ATAC version 1.0. Generated libraries were pooled
and paired-end sequenced (26 bp and 74 bp) on an Illumina
NovaSeq 6000 S2.

Bulk WGS data analysis
Preprocessing was performed using the DKFZ OTP WGS
pipeline.22 Calling of CNAs and single nucleotide variants
(SNVs) was performed as previously described.23 For the
supervised mutational signature analysis, we applied mmsig.24

In order to call SNVs in the mitochondrial genome, we estab-
lished a bulk sequencing analysis workflow.

scRNA-seq data analysis
Preprocessing, data normalization, and CNA prediction were
performed as previously described.8 Differential and pseudo-
bulk gene expression analysis was performed with Find(All)
Markers and AverageExpression in Seurat.25 Intercellular
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communication networks between tumor and BME cells were
quantitatively inferred and analyzed with CellChat.26

scATAC-seq data analysis
Preprocessing was performed with CellRanger ATAC and
downstream analysis with ArchR.27 All cells with a total number
of <3000 fragments, a transcription start site enrichment score
<7, a doublet enrichment score >6, and predicted doublet
score >100 were excluded (supplemental Figure 1, available on
the Blood website). PCs were distinguished from BME cells
based on inferred gene-activity scores of specific marker genes,
including TNFRSF17/CD138/SLAMF7/CD38, using MAGIC.28

Nonmalignant PCs from different patients clustered together
(supplemental Figure 1F). Myeloma cells from all patients were
normalized, dimensionality reduced using iterative latent
semantic indexing,29,30 and clustered. Peak calling was per-
formed with MACS2.31 Motif deviations were calculated based
on the JASPAR database.32,33 For each transcription factor (TF)
motif, a mean value was calculated over all cells per sample.
Coaccessibility among genomic regions was separately calcu-
lated for time points and subclones, adjusting the ArchR-
framework to sc resolution without the aggregation of cells,
as described previously.34 We predicted CNAs by adopting an
approach suggested by Lareau et al.10 Mitochondrial variants
were called with mgatk.10

Subclone assignment
Subclones were identified separately in scRNA-seq and scATAC-
seq data via supervised iterative hierarchical WGS-guided clus-
tering of specific chromosomes or chromosomal regions using
custom R-scripts (supplemental Figure 1K; supplemental
Information; https://github.com/a-poos/MM_subclones).

For further details, see supplemental Information.
Results
A WGS-guided sc multiomics analysis integrates
transcriptome and epigenome profiles of
subclones
Previous studies have highlighted treatment-related subclonal
dynamics in MM.13 However, how individual subclones respond
to treatment and interact with the BME remains largely unknown,
although this could provide crucial information of therapy resis-
tance mechanisms. Accordingly, we performed droplet-based
scATAC-seq and scRNA-seq in combination with WGS for
CD138+-sorted BM aspirates of 15 patients with RRMM. Serial
samples were collected for 12 of 15 patients before salvage
therapy (T1) and at the time of subsequent relapse (T2; Figure 1A;
supplemental Table 1), yielding 44637 and 37280 tumor cells
after quality control, for scATAC-seq and scRNA-seq, respectively
(Figure 1B; supplemental Figure 1; supplemental Tables 1 and 2).
With clonal and subclonal CNAs occurring in virtually all patients
with MM,36 we implemented a WGS-guided clustering strategy
to resolve the subclonal structure in scRNA-seq and scATAC-seq
data (Figure 1C; supplemental Figures 1M and 2; supplemental
Table 3). The results obtained for both sc-seq modalities were
highly correlated (ρ = 0.972, linear model; average deviation, ~5),
enabling us to combine transcriptional and epigenetic profiles of
individual subclones (Figure 1D; supplemental Figure 2Q).
POOS et al

https://github.com/a-poos/MM_subclones


scATAC-seq (44,637 cells) scRNA-seq (37,280 cells)
RRMM patients RRMM patients

1
2
3
5
6
7
9

10
15
16
17
18
19
20
21

1
2
3
5
6
7
9

10
15
17
18
19
20
21

1K 5K

Cell number

10K
1K 3.5K

Cell number

7K

2019 21109 15 171865 721 3
RRMM
patients

P = .972

0

0

25

25

50

50

Subclone frequency (%) scRNA-seq

75

75

100

100

Su
b

cl
o

ne
 f

re
q

ue
nc

y
(%

) s
cA

TA
C

-s
eq

Bone marrow aspirate

Isolation of
mononuclear cells

Sorting of
CD138+ cells

sc
ATA

C-se
q

sc
RNA-se

q

bulk
 W

GS

Timepoint
T1
T2
N/A

R
R

M
M

 p
at

ie
nt

s

1
2
3
5
6
7
9
10
15
16
17
18
19
20
21

151413121110987654321

3

4

6

7

9

10

11

16 17 18 19 20 21 22
4
3
2
1
0

0

4
3
2
1

Su
bclo

ne

Tim
ep

oint
Copy
number

Modified
expression

W
G

S T1

T1

T2

T2

T1

T2

3

4

6
7

8

9

10

11

1
2

5

8

1
2

5

sc
R

N
A

-s
eq

sc
A

TA
C

-s
eq

1.10
1.05
1.00
0.95
0.90

Z score
3
2
0
–2
–3

A B

C

D

Figure 1. A WGS-guided sc multiomic analysis integrates transcriptome and epigenome profiles of subclones. (A) Experimental overview of the patient cohort and
available sequencing data. N/A indicates sample not available or sequencing yield <200 cells after quality control (QC). (B) UMAP embedding showing (left) scATAC- and
(right) scRNA-seq data after QC, based on latent sematic indexing. Individual malignant PCs are colored according to patient identity. The bar plot on the right shows the
number of cells per patient after QC. (C) Representative copy number profiles for the 22 autosomal chromosomes from (top) WGS, (middle) scRNA-, and (bottom) scATAC-seq
of patient RRMM15. The color bar on the left indicates the respective subclonal population and sampling time point before relapse treatment (T1) and at subsequent relapse
(T2). (Top) Copy number profile highlighting copy number gains (red), loss of heterozygosity (gray), and copy number losses (blue). Black represents a diploid copy number
status. (Middle) Heatmap showing modified gene expression values generated using inferCNV.35 Gains (red) and losses (blue) are highlighted. The scales were limited to 0.9
and 1.1. (Bottom) Heatmap for z-scores from scATAC-seq, using the identical color code as shown for WGS and scRNA-seq. Z-scores were limited to 3 and –3. (D) Pearson
correlation between the subclone frequency identified via scRNA- (x-axis) and scATAC-seq (y-axis) for all analyzed patients with both modalities. Each time point was plotted
separately, with each subclone being colored based on the patient. Linear regression line is depicted in black, in which the gray area marks the 95% confidence interval. The
deviation between the subclone frequency between scRNA-seq and scATAC-seq was from 0% to 23.9% (mean deviation = 5.08%).
mtDNA mutations further delineate the subclonal
structure
Our initial approach assumed that MM cells with the same CNA
profile belong to the same subclone. Next, we investigated
whether mtDNA mutations further dissected CNA-based sub-
clone definition in MM, because they have recently been
MULTIOMICS SUBCLONE ANALYSIS IN MM
proposed as an alternative approach for studying clonal
dynamics in patients with chronic lymphocytic leukemia10,11

and those with acute myeloid leukemia.12 We called mtDNA
mutations in the scATAC-seq data and confirmed the abun-
dance of the respective variants in matched WGS (ρ = 0.98,
linear model; supplemental Figure 3C-F). Overall, each patient
9 NOVEMBER 2023 | VOLUME 142, NUMBER 19 1635
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Figure 2. Mitochondrial mutations further delineate the subclonal structure. (A) Mitochondrial DNA (mtDNA) mutations detected in scATAC-seq data across patients.
Only mtDNA mutations with a mean heteroplasmy >1% in at least one of the paired samples were considered. The color bar at the top indicates the respective patient and
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Figure 2 (continued) accessibility and gene scores, respectively. (C) Heatmap of mtDNA mutations inferred from scATAC-seq data across subclones for patient RRMM15.
Only mtDNA mutations with a mean heteroplasmy >1% in at least one of the 2 samples are shown. The proportion of cells per mtDNA mutation, subclone, and time point is
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clustered according to chromatin accessibility profiles for patient RRMM15. Examples for (D) subclone enriched and (E) branch enriched mtDNA mutations are shown. Each
individual cell is colored according to (top) the respective subclone or (bottom) the heteroplasmy of the indicated mtDNA mutations, with red representing >10% and gray,
0%. (F) Heatmap of the most highly variable 72 TF motifs across all subclones of T1 and T2. Color indicates pseudobulk TF motif deviation score per subclone. (G) UMAP plots
of single RRMM cells. Each cell is colored according to the TF motif deviation score of POU5F1B, TCF3, and IRF4. (H) Stability of mtDNA mutations from diagnosis to relapsed/
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with RRMM displayed a largely distinct mtDNA mutational
profile (mean = 6 mutations; range 1-14 mutations; Figure 2A;
supplemental Table 4). In line with previous reports, mutations
followed a pattern equivalent to replication asymmetry and
selective neutrality with C>T and T>C mutations11,37,38

(supplemental Figure 3D).

For patient RRMM19, in line with WGS-based cancer clonal
fractions for somatic nuclear mutations, 2 mtDNA mutations
(15777G>A and 3749T>C) were distinctly enriched in single
cells at T1 and T2, respectively. Thus, 2 subclones with the
same CNA profile can be distinguished based on their
mtDNA mutations (supplemental Figure 3A-B). We next
compared subclones defined based on mtDNA mutations
alone with those from our initial CNA-based assessment.
MULTIOMICS SUBCLONE ANALYSIS IN MM
Unique mtDNA mutations were detectable in 33% of the
CNA-defined subclones (18 of 55; supplemental Figure 3G-L;
supplemental Table 5), demonstrating that mtDNA mutations
alone are not enough to resolve the subclonal architecture in
RRMM.

By combining CNAs and mtDNA mutations, we were able to
reveal further details of the subclonal architecture. Patient
RRMM15 is the prime example for this finding (Figure 2B-G). In
this patient, we initially identified 9 subclones using only the
WGS-guided CNA approach (supplemental Figure 2P). By
incorporating mtDNA mutation information, we identified 2
additional subclones in the scATAC-seq data (Figure 2B-D).
These 2 subclones could be distinguished by the 2 lineage-
defining mtDNA mutations, 10114T>C and 14769A>G (branch
9 NOVEMBER 2023 | VOLUME 142, NUMBER 19 1637
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Figure 3. Subclone-specific adaptation mechanisms to treatment reflect the clonal evolution pattern. (A) (Left) Percentage of differentially expressed genes between T1
and T2 that are shared across subclones of the same patient (Padj ≤ .05; 1.5-fold enrichment both ways; Wilcoxon rank sum test). (Right) Percentage of TF motif activity changes
between T1 and T2 (Padj ≤ .05) that are shared across subclones of the same patient. Motif deviation scores were calculated based on all differential peaks, with Padj ≤ .05 and
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A) in scATAC-seq, and depicted unique chromosomal aberra-
tions (supplemental Figure 3M). Importantly, these initially
undetected CNAs could also be assigned to corresponding
subclones in the scRNA-seq data (supplemental Figure 3N). In
addition, we detected mtDNA mutations jointly enriched in
multiple subclones that as such marked subclonal branches (eg,
15928G>A in subclones 1 and 2, 15356G>A and 12962G>A in
subclones 7 and 8, and 13958G>A in subclones 9, 10, and 11;
Figure 2B-C,E), which allowed us to delineate clonal relationships
(Figure 2B-C,E; supplemental Figure 3G-L; supplemental
Table 5). Cells with these jointly enriched mtDNA mutations
segregated on the UMAP plot and marked distinct populations,
including the branch-specific activity of POU5F1B, TCF3, and
IRF4 TF motifs (Figure 2F-G), supporting the close relationship of
those subclones.

Next, we assessed whether emerging relapse disease can be
traced via mtDNA mutations. For this, sequencing data of tumor
samples from 6 patients consecutively sampled over a time
span of up to 3899 days were analyzed (Figure 2H;
supplemental Figure 4A-C). Dynamic mtDNA mutations,
including RRMM-enriched mutations, were detected in 4 of 6
patients (RRMM2/9/10/15; Figure 2H; supplemental Figure 4C).
Remarkably, in these patients, RRMM-enriched mutations were
seen up to 2464 days before T2 (Figure 2H). However, none of
them were detectable at baseline (Figure 2H), suggesting clonal
expansion of single tumor cells upon exposure to melphalan
during first-line or relapse therapy (supplemental Table 1).
Indeed, in our study, all patients with RRMM-enriched mtDNA
mutations carried the single-base substitution MM1 mutational
signature (supplemental Figure 4D), which is strongly linked
with exposure to melphalan.39-41

Together, our results describe how mtDNA mutations can be
best applied as lineage markers when combined with a CNA-
based subclone assignment. This integrated approach yielded
a comprehensive picture of the subclonal architecture with an
average of 4 (range 1-11) subclones per patient (supplemental
Figure 2Q) and matched transcriptome and epigenome pro-
files. In patients with paired samples, stable evolution, clonal
selection, and branching evolution were seen in 5, 4, and 3
patients, respectively (supplemental Figure 2Q; supplemental
Figure 5). It provides the foundation to investigate subclonal
dynamics before and after treatment, as described in subse-
quent sections.
Parallel occurrence of resistance mechanisms
across subclones
Having determined subclones with matching transcriptional
and epigenetic profiles, we investigated the impact of treat-
ment on individual subclones in all patients with multiple
identical subclones that were present at both time points and
Figure 3 (continued) based on scATAC-seq data. Individual stacks are colored according
RRMM7, (F) RRMM3, and (I) RRMM9 across subclones from T1 to T2. Color indicates pseud
≤ .05; RRMM3+7: 1.5-fold enrichment both ways, RRMM9: log2-fold change >0.25 both w
across subclones and timepoints. Significant (C) HSPs or (F,I) genes of the NF-κB pathway
context of drug resistance are labelled. (Right) Violin plots showing normalized gene e
pathway. (D,G,J) Epigenetic changes for patients (D) RRMM7, (G) RRMM3, and (J) RRMM9
top 50 most highly variable TFs (plus NF-κB TFs motifs for RRMM9). (Left) Heatmap of the
at relapse (T2) compared with that at T1. (D) TFs putatively binding to the HSPs promot
labelled. (Right) Violin plots showing scATAC-seq TF motif activity per time point and su

MULTIOMICS SUBCLONE ANALYSIS IN MM
defined based on our combined CNA- and mtDNA-based
assignment (supplemental Figure 2Q). In patients with
branching evolution, even at the sc level, we were unable to
detect newly emerging subclones already at T1. Therefore, we
focused on patients with stable evolution or clonal selection
patterns to compare subclonal transcriptional and epigenetic
changes over time (supplemental Figure 2Q). Although het-
erogeneous treatment regimens were applied (supplemental
Table 1), a common pattern emerged in these patients: we
found that the majority of therapy-induced changes in gene
expression (median, 86%; range 64%-96%) and TF motif
activity (median, 93%; range, 71%-95%) were shared across
individual subclones for each patient (Figure 3A-G;
supplemental Figure 6; supplemental Table 6). These
converging adaptation mechanisms can be illustrated by
known resistance mechanisms to 2 treatment approaches:
proteasome inhibition via increased expression of heat-shock
proteins (HSPs)42-44 (Figure 3B-D) and MEK/BRAF inhibition
via NF-κB pathway45 upregulation (Figure 3E-G). In patient
RRMM7, several HSPs known as resistance drivers, such as
HSP90AA1,42-44 were significantly upregulated upon carfilzo-
mib treatment in both subclones (5 of 25 genes; Padj ≤ .05; 1.5-
fold enrichment both ways; Wilcoxon rank sum test; Figure 3C).
In line with this finding, the motifs of TFs, including ZNF384,
IRF1, and MEF2 family members, which can bind to the pro-
moter of the upregulated HSPs,46 displayed a significantly
higher activity after therapy in both subclones (Padj ≤ .05, Wil-
coxon rank sum test; Figure 3D). In RRMM3, who was treated
with MEK/BRAF inhibitors, both subclones demonstrated a
significant upregulation of genes of the NF-κB pathway (18 of
37 upregulated genes; Padj ≤ .05; 1.5-fold enrichment;
Figure 3F).47-50 This was corroborated by a significantly higher
activity of NF-κB motifs upon MEK/BRAF inhibition in both
subclones (Padj ≤ .05; Figure 3G). Combined BRAF/MEK inhi-
bition has previously been shown to induce high rates of clin-
ical response.23,51 Accordingly, we analyzed an additional
patient belonging to this treatment group, who exhibited major
changes in its clonal composition (RRMM9; Figure 3H). Similar
to RRMM3, 11 of 37 (30%) genes upregulated upon MEK/BRAF
inhibition are part of the NF-κB pathway47 (Padj ≤ .05; log2 fold–
change > 0.25; Wilcoxon rank sum test; Figure 3I). These genes
included BCMA (TNFRSF17),51 CD79A,48,49 and BTG2.50 For
RRMM9, only 1 of 4 subclones was still detectable after therapy
(Figure 3H). This subclone depicted the highest NF-κB–family
member motif activity of all subclones at T1 (Figure 3J). We
conclude that, independent of subclonal composition, treatment
resistance can be mediated either by converging phenotypic
adaptation of all subclones or preexisting epigenetic profiles that
do not necessarily have to be therapy-induced. This emphasizes
the importance to assess MM on the level of individual subclones
as well as the use of sc multiomics analysis for our understanding
of the role of transcriptional and epigenetic features in
treatment-induced resistance.
to the respective subclone identity. (C,F,I) Gene expression changes for patients (C)
obulk gene expression of the differentially expressed genes between T1 and T2 (Padj
ays; Wilcoxon rank sum test). (Left) Heatmap of scRNA-seq pseudobulk expression
commonly upregulated in all subclones that have previously been described in the

xpression per time point and subclone for HSPs or genes belonging to the NF-κB
across subclones from T1 to T2. Color indicates pseudobulk TF motif activity of the
top 50 of 54 TF motifs, which show a significant higher or lower motif deviation score
er or (G,J) TFs from the NF-κB family commonly upregulated in both subclones are
bclone for 2 or 3 exemplary TFs.
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Figure 4. Differential treatment response is associated with subclone-specific BME interaction. (A) (Left) Bar plot depicting the proportion of subclones per time point for
patient RRMM6, detected via scATAC-seq. The individual stacks are colored according to the respective subclone identity. (Right) Phylogenetic tree for patient RRMM6. Top
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assignment. (B) Viability of the MM cell line AMO-1 based on normalized CellTiter-Glo luminescence reads on exposure to increasing concentrations of MCL-1 inhibitor
MIK665 (Novartis) for 24 hours in cells with wt TP53 or biallelic TP53 (TP53 del/mut [R175H]). Data are represented as means ± standard deviation; n = 3. Welch two-sample t
test: *P < .05; **P < .01; ***P < .001. (C) Volcano plot summarizing the global changes in gene expression levels between subclones 1 and 2 for patient RRMM6. An absolute
Padj value of .05 is indicated by a dashed line (Wilcoxon rank sum test). Surface markers are labeled. (D) Chromatin accessibility at the CD44 promoter plus 50 kb upstream and
downstream in patient RRMM6. The CD44 promoter peak is highlighted in light blue. (Top) Aggregated pseudobulk scATAC-seq tracks at both timepoints. (Right) Violin plots
showing normalized CD44 expression from scRNA-seq data per timepoint with individual cells plotted as dots. (Middle) Peaks are colored based on the location of the peak in
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Pearson correlation coefficient. (E) CD44 expression based on bulk RNA-seq data in a set of 46 patients with RRMM with biallelic-inactivated (n = 8), monoallelic-depleted (n =
11) or wt TP53 (n = 27). (F) CD44 expression in genetically engineered biallelic TP53 del/mut (R175H) and wt/wt AMO-1 cell lines. (Top) Publicly available bulk RNA-seq data
(GSE13234052,53) were analyzed for CD44 expression. Box plot of normalized expression values for n = 3 replicates. (Bottom) Western blot analysis of CD44 protein levels in the
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Differential treatment response is associated with
subclone-specific BME interaction
Based on the observation that subclonal properties can underlie
differential treatment response, we next considered other
patients in whom treatment-induced changes in the subclonal
architecture were seen (supplemental Figure 2Q). We found
that MCL-1 inhibition in patient RRMM6 resulted in the deple-
tion of a subclone with a biallelic TP53 aberration (Figure 4A;
supplemental Figures 4A and 5C). To address the molecular
mechanism underlying this depletion, we first explored poten-
tial subclonal alterations of the target. We detected differences
in the coaccessibility at the MCL-1 locus between the 2 main
subclones (subclone 1 vs subclone 2) before initiation of MCL1
therapy. However, these differences did not result in significant
MCL-1 expression changes (supplemental Figure 7). Next, we
assessed whether TP53 aberrations directly affect the vulnera-
bility of cells to MCL-1 induced cytotoxicity. Therefore, genet-
ically engineered biallelic TP53 deleted + R175H mutated
(del/mut)52,53 and wild-type (wt/wt) AMO-1 cell lines were
exposed to different doses of an MCL-1 inhibitor in vitro
(Figure 4B). In contrast to what is suggested by the findings for
RRMM6, the biallelic TP53 AMO-1 cell line was less sensitive
compared with the wt cell line (P < .05, Welch two-sample t test,
Figure 4B; supplemental Figure 7B). Thus, inactivation of TP53
does not appear to underlie the depletion of subclone 1 in
RRMM6. We, next, turned toward transcriptional differences
between the 2 main subclones. The top differentially expressed
genes between the 2 main subclones at T1 covered several
surface markers (Figure 4C; supplemental Table 6). Among
those, CD44 has been reported as a key cell adhesion–
mediated drug resistance (CAM-DR)54 molecule and is a
known mediator of tumor-BME interactions.55,56 In line with the
differential gene expression analysis, a coaccessibility analysis
of the scATAC-seq data showed a strong correlation between
the CD44 promoter and a distal putative enhancer element for
subclone 1 that was absent for subclone 2 at time point T1
(Figure 4D). Thus, activating an enhancer in one but not the
other subclone could lead to the observed differences in CD44
expression. To test whether a higher CD44 expression is related
to biallelic TP53 inactivation, we performed bulk RNA-seq in a
set of 46 patients with RRMM.23,57 We found CD44 expression
significantly increased in patients with TP53 biallelic mutation
compared with that in patients with wt TP53 (P = .012, two-
sided Wilcoxon rank sum test) as well as mutated TP53 (P =
.051; Figure 4E). As a functional validation, we turned toward
publicly available bulk RNA-seq data52,53 from genetically
engineered biallelic TP53 del/mut (R175H) and wt/wt AMO-1
cell lines. We found a significantly higher CD44 gene expres-
sion in the cell line with inactivated TP53 than in wt TP53
(Figure 4F; adjusted P = 7.103e−07; log2 fold–change = 0.524,
Wald test after Benjamini-Hochberg correction for multiple
testing). This finding could also be confirmed using western
blot analysis (Figure 4F). The high CD44 expression at T1 sub-
sequently decreased upon MCL1-inhibition, suggesting a
potential mechanism involving altered subclone-BM micro-
environment interactions (Figure 4G). Indeed, CellChat26
Figure 4 (continued) indicated MM cell lines. Tubulin was used as a loading control. This
showing normalized CD44 expression per timepoint and subclone for patient RRMM6. (H
between subclones of patient RRMM6 and BME cells. The links start at a sender and end
BME cells are not indicated.

MULTIOMICS SUBCLONE ANALYSIS IN MM
predicted a specific interaction between subclone 1 and
cDC2/GMPs/CD14+ as well as CD16+ monocytes via CD44 at
T1 (Figure 4H; supplemental Table 7). Importantly, this
respective interaction was lost upon MCL1-inhibition
(Figure 4H). Together these results suggest differences in
tumor-BME interactions among subclones with differential
treatment response.

Shared BME interactions across subclones indicate
potentially actionable therapeutic targets
The results described above prompted us to broaden our
interaction predictions to all patients with at least 2 coexisting
subclones per time point and matched scRNA-seq of the BME
(n = 7). Across these patients, CellChat predicted, on average,
32 ligand-receptor interactions (range 23-45) between tumor
and BME cells, of which ~20% (median = 7; range 3-12) were
not predicted in all subclones per patient (unshared interaction,
Figure 5A-B; supplemental Table 7). The intercellular adhesion
molecule (ICAM) signaling network was found to mediate most
of the unshared interactions with the BM microenvironment
across our patient cohort (Figure 5C-D; supplemental
Figure 8A-B). In particular, the interaction between ICAM2 on
the myeloma cells and several integrins (ITGB2/ITGAL/ITGAM/
ITGAX) on the BME cells was predicted to be subclone-specific
in 5 patients.

All patients with longitudinal samples showed interactions that
changed between time points (temporal changes; Figure 5B-C;
supplemental Table 7). For example, in patient RRMM15, all
subclones at T2 showed a temporal interaction mediated by the
ICAM1 pathway, which was not detected at T1 (Figure 5C;
supplemental Figure 8B). ICAM1-targeted immunotherapies in
the form of anti-ICAM1 monoclonal antibody bersanlimab (BI-
505, BioInvent)58 or CD38 × ICAM1 bispecific antibody59 are
already being tested in clinical trials (NCT01838369) or have
been suggested for MM and B-cell non-Hodgkin lymphoma.60-62

Accordingly, we further investigated ICAM1 temporal expression
changes in an extended bulk RNA-seq data set of 16 patients
with RRMM. We found that ICAM1 expression was significantly
upregulated at T2 (P = .02, paired Wilcoxon signed rank test),
particularly in patients RRMM6 and RRMM15 (Figure 5E). To
further delineate the mechanism underlying increased ICAM1
expression, we assessed the chromatin accessibility at the ICAM1
locus through our scATAC-seq data. We observed a higher
coaccessibility at the ICAM1 promoter region for cells at T2 than
those at T1, suggesting a therapy-induced higher activity of
ICAM1 (Figure 5F; supplemental Figure 8C). Moreover, RRMM
cells also showed higher accessibility of TF motifs previously
described in MM pathogenesis, including IRF,63-72 NF-κB,73-75

and STAT76-78 family members at T2 (Figure 5G; supplemental
Figure 8D). Within these families, IRF4, IRF1, RELA, STAT1, and
STAT2 are known TFs that drive ICAM1 expression.46 This
upregulation mechanisms derived from our scATAC-seq data
was in agreement with chromatin immunoprecipitation assays
followed by sequencing (ChIP-seq) analysis of the MM cell line
KMS12BM.72 We found an overlap of the ICAM1 promoter
blot is representative of 3 independent experiments. (G) Violin and box-whisker plots
) Circos plot and chord interaction diagram of LGALS9-CD44–mediated interactions
at a receiver. Sender-receiver interactions seen in all subclones as well as between
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Pearson correlation coefficient. (G) The top TF motifs for patient RRMM15, which show a significantly higher motif deviation score at relapse (T2) compared with that at T1. TFs
putatively binding to the ICAM1 promoter are labeled in blue.
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peak with IRF4 ChIP-seq peaks (Figure 5F; supplemental
Figure 8C). These orthogonal data sets suggest a differential
ICAM1 expression driven by TFs that include IRF4.

In summary, we observed subclone-specific interactions with
BME cells that change upon treatment in all patients. Some
interactions, such as those mediated by ICAM1, were shared
among subclones at a given time point and, thus, represent
potentially actionable immunotherapy targets across subclones.
Discussion
The assessment of MM subclones and their molecular charac-
terization during treatment are key for advancing patient strati-
fication and therapy response prediction. In this study, we
implemented an integrative multiomics approach that combines
information from different bulk and sc readouts in a longitudinal
analysis of RRMM to determine subclones at unprecedented
resolution. Firstly, using WGS as a reference largely improved the
accuracy of the CNA-based subclone definition from sc-seq data.
Secondly, integrating 2 sc-seq approaches enabled us to further
cross-validate our WGS-guided subclone definition and to
analyze subclone-specific transcriptome and epigenome plas-
ticity. Thirdly, including mtDNA mutations called from scATAC-
seq resolved subclones with identical CNA profile. Our frame-
work increased the ability to capture the subclonal diversity and
their ancestry. For example, we identified 11 subclones for
patient RRMM15 when using all readouts, although only 4 sub-
clones were detected by clustering based on CNAs of all chro-
mosomal regions. This was because CNA subclones from the
same ancestral branch clustered together, suggesting that
defining subclones based on transcriptional and epigenetic
clusters alone may lead to an underestimation of the subclonal
diversity. In addition, we conclude that mtDNA mutations on
their own are insufficient for MM subclone definition, with only
one-third of CNA-defined subclones in this study displaying
unique mtDNA mutations. This observation could also be rele-
vant for other hematologic malignancies, including chronic lym-
phocytic leukemia 10,11 and acute myeloid leukemia,12 in which
mtDNA mutations have been used to define subclones.

Our approach provided a high-resolution map of the dynamic
subclonal architecture with matched RNA and ATAC profiles for
individual subclones before and after therapeutic interventions.
We find that relapse can occur via different resistance mechanisms
that include the expansion of subclones with preexisting epige-
netic profiles associated with resistance, plasticity, and adaptation
of gene expression programs in individual subclones as well as
changes in MM-BME interactions. Plasticity in gene expression is
in line with previously described resistance mechanisms to pro-
teasome inhibitors via the upregulation of HSPs42-44 and activation
of the NF-κB pathway45 upon MEK/BRAF inhibition. Thus, it will
be important to monitor these pathways in relation to subclone
composition for assessing treatment response.

In several patients, we found a branching evolution pattern as
identified previously as the major evolution pattern in deep
responding patients with MM.13 This pattern is characterized by
depletion of previously dominant subclones and emergence of
new subclones, which makes it challenging to study subclones
over time in these patients. In this study, we were unable to
MULTIOMICS SUBCLONE ANALYSIS IN MM
detect the new subclones present at T2 at sc level at T1 in
patients with branching evolution. To account for this issue, we
envision our approach to be applied to tumor cells purified from
patients receiving therapy, for example, as previously per-
formed 48 hours after therapy start,79 or from patients tested
positive for minimal residual disease at various time points
during the course of disease.80 In patients with stable evolution
and clonal selection, we were able to longitudinally track indi-
vidual subclones over time. Future studies focusing on larger
cohorts with uniform treatment will be crucial to understand
common transcriptomic or epigenetic features among sub-
clones that have disappeared or emerged.

Previous work has characterized the BME of different MM disease
stages,6,8,81 providing evidence for deregulation of cell surface
marker expression as resistance mechanisms.8,19 Through the
combined analysis of tumor subclones and their BME, we show
that individual subclones can have distinct interaction profiles
with the BME, which further increases the complexity of MM
heterogeneity. This includes subclone-specific expression and
transcriptional plasticity for CD44, a key cell adhesion–mediated
drug resistance54 molecule and promising immunotherapy
target.55,56 In future studies, subclone-specific cellular interac-
tions, such as CD44 on MM cells and LGALS9 on BME cells, could
be validated by emerging spatially resolved techniques.82,83

Thus, at least in some patients, subclones might display individ-
ual resistance mechanisms and respond differently to immuno-
therapy.7,84,85 Consequently, to improve the outcome of available
therapies, the identification of shared targets across subclones is
essential and remains one of the biggest challenges to achieve
long-term remissions. In this context, we show highly similar
transcriptional and epigenetic changes upon treatment in
patients with multiple distinct subclones, indicating converging
adaptation mechanisms. The repertoire of shared treatment-
induced changes included upregulation of ICAM1, another key
mediator of cell-cell interactions.86 As BME cells nurture and
facilitate the proliferation of MM subclones,87 such shared
mediators could constitute actionable candidates for immuno-
therapeutic targeting of a heterogenous disease.2 In summary,
we anticipate that the integrative multiomics analysis, introduced
in this article for RRMM, will prove useful for therapy response
prediction based on the subclone composition as well as the
identification of novel molecular targets against multidrug-
resistant subclones.
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7. Da Vià MC, Dietrich O, Truger M, et al.
Homozygous BCMA gene deletion in
response to anti-BCMA CAR T cells in a
patient with multiple myeloma. Nat Med.
2021;27(4):616-619.

8. Tirier SM, Mallm JP, Steiger S, et al.
Subclone-specific microenvironmental
impact and drug response in refractory
multiple myeloma revealed by single-cell
transcriptomics. Nat Commun. 2021;12(1):
6960.
9. Cohen YC, Zada M, Wang SY, et al.
Identification of resistance pathways and
therapeutic targets in relapsed multiple
myeloma patients through single-cell
sequencing. Nat Med. 2021;27(3):491-503.

10. Lareau CA, Ludwig LS, Muus C, et al.
Massively parallel single-cell mitochondrial
DNA genotyping and chromatin profiling.
Nat Biotechnol. 2021;39(4):451-461.

11. Penter L, Gohil SH, Lareau C, et al.
Longitudinal single-cell dynamics of
chromatin accessibility and mitochondrial
mutations in chronic lymphocytic leukemia
mirror disease history. Cancer Discov. 2021;
11(12):30483063.

12. Velten L, Story BA, Hernández-Malmierca P,
et al. Identification of leukemic and pre-
leukemic stem cells by clonal tracking from
single-cell transcriptomics. Nat Commun.
2021;12(1):1366.

13. Rasche L, Schinke C, Maura F, et al. The
spatio-temporal evolution of multiple
myeloma from baseline to relapse-refractory
states. Nat Commun. 2022;13(1):4517.

14. Keats JJ, Chesi M, Egan JB, et al. Clonal
competition with alternating dominance in
multiple myeloma. Blood. 2012;120(5):
1067-1076.

15. Weinhold N, Ashby C, Rasche L, et al. Clonal
selection and double-hit events involving
tumor suppressor genes underlie relapse in
myeloma. Blood. 2016;128(13):1735-1744.

16. Maura F, Bolli N, Angelopoulos N, et al.
Genomic landscape and chronological
reconstruction of driver events in multiple
myeloma. Nat Commun. 2019;10(1):3835.

17. Corre J, Cleynen A, Robiou du Pont S, et al.
Multiple myeloma clonal evolution in
homogeneously treated patients. Leukemia.
2018;32(12):2636-2647.

18. Ledergor G, Weiner A, Zada M, et al. Single
cell dissection of plasma cell heterogeneity in
symptomatic and asymptomatic myeloma.
Nat Med. 2018;24(12):1867-1876.

19. Frede J, Anand P, Sotudeh N, et al. Dynamic
transcriptional reprogramming leads to
immunotherapeutic vulnerabilities in
myeloma. Nat Cell Biol. 2021;23(11):
1199-1211.

20. Waldschmidt JM, Kloeber JA, Anand P, et al.
Single-cell profiling reveals metabolic
reprogramming as a resistance mechanism in
BRAF-mutated multiple myeloma. Clin
Cancer Res. 2021;27(23):6432-6444.

21. Sklavenitis-Pistofidis R, Aranha MP, Redd RA,
et al. Immune biomarkers of response to
immunotherapy in patients with high-risk
smoldering myeloma. Cancer Cell. 2022;
40(11):1358-1373.e8.

22. Reisinger E, Genthner L, Kerssemakers J,
et al. OTP: an automatized system for
managing and processing NGS data.
J Biotechnol. 2017;261:53-62.

23. Giesen N, Chatterjee M, Scheid C, et al.
A phase II clinical trial of combined BRAF/
MEK inhibition for BRAF V600E-mutated
multiple myeloma. Blood. 2023;141(14):
1685-1690.

24. Rustad EH, Nadeu F, Angelopoulos N, et al.
mmsig: a fitting approach to accurately
identify somatic mutational signatures in
hematological malignancies. Commun Biol.
2021;4(1):424.

25. Stuart T, Butler A, Hoffman P, et al.
Comprehensive integration of single-cell
data. Cell. 2019;177(7):1888-1902.e21.
POOS et al

http://orcid.org/0000-0002-6429-9895
http://orcid.org/0000-0001-5645-9492
http://orcid.org/0000-0001-5645-9492
http://orcid.org/0000-0002-4845-5042
http://orcid.org/0000-0001-9811-3836
http://orcid.org/0000-0001-8178-6890
http://orcid.org/0000-0002-9536-9649
http://orcid.org/0000-0002-7011-0286
http://orcid.org/0000-0002-7011-0286
http://orcid.org/0000-0002-9615-2564
http://orcid.org/0000-0002-7166-5232
http://orcid.org/0000-0002-7166-5232
http://orcid.org/0000-0003-0961-0035
http://orcid.org/0000-0002-8818-7193
http://orcid.org/0000-0001-9951-9395
mailto:karsten.rippe@dkfz-heidelberg.de
mailto:niels.weinhold@med.uni-heidelberg.de
mailto:niels.weinhold@med.uni-heidelberg.de
https://doi.org/10.1182/blood.2023019758
https://doi.org/10.1182/blood.2023019758
mailto:karsten.rippe@dkfz-heidelberg.de
mailto:niels.weinhold@med.uni-heidelberg.de
mailto:niels.weinhold@med.uni-heidelberg.de
http://www.bloodjournal.org/content/142/19/1582
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref1
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref1
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref1
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref1
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref2
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref2
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref2
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref3
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref3
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref3
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref3
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref4
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref4
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref4
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref4
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref4
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref5
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref5
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref5
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref5
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref6
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref6
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref6
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref6
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref6
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref6
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref7
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref7
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref7
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref7
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref7
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref7
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref8
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref8
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref8
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref8
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref8
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref8
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref9
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref9
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref9
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref9
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref9
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref10
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref10
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref10
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref10
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref11
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref11
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref11
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref11
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref11
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref11
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref12
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref12
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref12
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref12
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref12
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref12
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref13
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref13
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref13
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref13
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref14
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref14
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref14
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref14
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref15
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref15
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref15
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref15
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref16
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref16
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref16
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref16
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref17
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref17
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref17
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref17
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref18
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref18
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref18
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref18
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref19
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref19
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref19
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref19
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref19
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref20
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref20
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref20
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref20
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref20
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref21
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref21
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref21
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref21
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref21
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref22
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref22
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref22
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref22
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref23
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref23
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref23
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref23
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref23
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref24
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref24
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref24
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref24
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref24
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref25
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref25
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref25


26. Jin S, Guerrero-Juarez CF, Zhang L, et al.
Inference and analysis of cell-cell
communication using CellChat. Nat
Commun. 2021;12(1):1088.

27. Granja JM, Corces MR, Pierce SE, et al. ArchR
is a scalable software package for integrative
single-cell chromatin accessibility analysis.
Nat Genet. 2021;53(3):403-411.

28. van Dijk D, Sharma R, Nainys J, et al.
Recovering gene interactions from single-cell
data using data diffusion. Cell. 2018;174(3):
716-729.e27.

29. Satpathy AT, Granja JM, Yost KE, et al.
Massively parallel single-cell chromatin
landscapes of human immune cell
development and intratumoral T cell
exhaustion. Nat Biotechnol. 2019;37(8):
925-936.

30. Granja JM, Klemm S, McGinnis LM, et al.
Single-cell multiomic analysis identifies
regulatory programs in mixed-phenotype
acute leukemia. Nat Biotechnol. 2019;37(12):
1458-1465.

31. Zhang Y, Liu T, Meyer CA, et al. Model-based
analysis of ChIP-Seq (MACS). Genome Biol.
2008;9:R137.

32. Khan A, Fornes O, Stigliani A, et al. JASPAR
2018: update of the open-access database of
transcription factor binding profiles and its
web framework. Nucleic Acids Res. 2021;
46(D1):D1284-D266.

33. Castro-Mondragon JA, Riudavets-Puig R,
Rauluseviciute I, et al. JASPAR 2022: the 9th
release of the open-access database of
transcription factor binding profiles. Nucleic
Acids Res. 2022;50(D1):D165-D173.

34. Mallm J-P, Iskar M, Ishaque N, et al. Linking
aberrant chromatin features in chronic
lymphocytic leukemia to transcription factor
networks. Mol Syst Biol. 2019;15(5):e8339.

35. Patel AP, Tirosh I, Trombetta JJ, et al. Single-
cell RNA-seq highlights intratumoral
heterogeneity in primary glioblastoma.
Science. 2014;344(6190):1396-1401.

36. Melchor L, Brioli A, Wardell CP, et al. Single-
cell genetic analysis reveals the composition
of initiating clones and phylogenetic patterns
of branching and parallel evolution in
myeloma. Leukemia. 2014;28(8):1705-1715.

37. Ju YS, Alexandrov LB, Gerstung M, et al.
Origins and functional consequences of
somatic mitochondrial DNA mutations in
human cancer. Elife. 2014;3:e02935.

38. Yuan Y, Ju YS, Kim Y, et al. Comprehensive
molecular characterization of mitochondrial
genomes in human cancers. Nat Genet. 2020;
52(3):342-352.

39. Landau HJ, Yellapantula V, Diamond BT,
et al. Accelerated single cell seeding in
relapsed multiple myeloma. Nat Commun.
2020;11(1):3617.

40. Maura F, Weinhold N, Diamond B, et al.
The mutagenic impact of melphalan in
multiple myeloma. Leukemia. 2021;35(8):
2145-2150.
MULTIOMICS SUBCLONE ANALYSIS IN MM
41. Rustad EH, Yellapantula V, Leongamornlert D,
et al. Timing the initiation of multiple myeloma.
Nat Commun. 2020;11(1):1917.

42. Jannuzzi AT, Arslan S, Yilmaz AM, et al.
Higher proteotoxic stress rather than
mitochondrial damage is involved in
higher neurotoxicity of bortezomib
compared to carfilzomib. Redox Biol. 2020;
32:101502.

43. Sha Z, Goldberg AL. Multiple myeloma cells
are exceptionally sensitive to heat shock,
which overwhelms their proteostasis network
and induces apoptosis. Proc Natl Acad Sci
U S A. 2020;117(35):21588-21597.

44. Shah SP, Nooka AK, Jaye DL, Bahlis NJ,
Lonial S, Boise LH. Bortezomib-induced heat
shock response protects multiple myeloma
cells and is activated by heat shock factor 1
serine 326 phosphorylation. Oncotarget.
2016;7(37):59727-59741.

45. Arozarena I, Wellbrock C. Overcoming
resistance to BRAF inhibitors. Ann Transl
Med. 2017;5(19):387.

46. Zhang Q, Liu W, Zhang HM, et al. hTFtarget:
a comprehensive database for regulations of
human transcription factors and their targets.
Genomics Proteomics Bioinformatics. 2020;
18(2):120-128.

47. University, B. NFKB target genes. Accessed
11 October 2022. https://www.bu.edu/nf-kb/
gene-resources/target-genes/

48. Luger D, Yang YA, Raviv A, et al. Expression
of the B-cell receptor component CD79a on
immature myeloid cells contributes to their
tumor promoting effects. PLoS One. 2013;
8(10):e76115.

49. Monroe JG. ITAM-mediated tonic signalling
through pre-BCR and BCR complexes. Nat
Rev Immunol. 2006;6(4):283-294.

50. Kawakubo H, Carey JL, Brachtel E, et al.
Expression of the NF-kappaB-responsive
gene BTG2 is aberrantly regulated in
breast cancer. Oncogene. 2004;23(50):
8310-8319.

51. Demchenko YN, Kuehl WM. A critical role for
the NFkB pathway in multiple myeloma.
Oncotarget. 2010;1:59-68.

52. Munawar U, Roth M, Barrio S, et al.
Assessment of TP53 lesions for p53 system
functionality and drug resistance in multiple
myeloma using an isogenic cell line model.
Sci Rep. 2019;9(1):18062.

53. Munawar U, Rasche L, Müller N, et al.
Hierarchy of mono- and biallelic TP53
alterations in multiple myeloma cell fitness.
Blood. 2019;134(10):836-840.

54. Suzuki R, Ogiya D, Ogawa Y, Kawada H,
Ando K. Targeting CAM-DR and
mitochondrial transfer for the treatment of
multiple myeloma. Curr Oncol. 2022;29(11):
8529-8539.

55. Bjorklund CC, Baladandayuthapani V, Lin HY,
et al. Evidence of a role for CD44 and cell
adhesion in mediating resistance to
lenalidomide in multiple myeloma:
9 NOV
therapeutic implications. Leukemia. 2014;
28(2):373-383.

56. Neri P, Bahlis NJ. Targeting of adhesion
molecules as a therapeutic strategy in
multiple myeloma. Curr Cancer Drug Targets.
2012;12(7):776-796.

57. Giesen N, Paramasivam N, Toprak UH, et al.
Comprehensive genomic analysis of
refractory multiple myeloma reveals a
complex mutational landscape associated
with drug resistance and novel therapeutic
vulnerabilities. Haematologica. 2022;107(8):
1891-1901.

58. Hansson M, Gimsing P, Badros A, et al.
A phase I dose-escalation study of antibody
BI-505 in relapsed/refractory multiple
myeloma. Clin Cancer Res. 2015;21(12):
2730-2736.

59. Chen X, Wong OK, Post L. CD38 x ICAM1
bispecific antibody is a novel approach for
treating multiple myeloma and lymphoma
[abstract]. Blood. 2021;138(suppl 1):2413.

60. Sherbenou DW, Su Y, Behrens CR, et al.
Potent activity of an anti-ICAM1 antibody-
drug conjugate against multiple myeloma.
Clin Cancer Res. 2020;26(22):6028-6038.

61. ICAM1-targeted immunotherapy is effective
in multiple myeloma. Cancer Discov. 2013;3:
602.

62. Veitonmäki N, Hansson M, Zhan F, et al.
A human ICAM-1 antibody isolated by a
function-first approach has potent
macrophage-dependent antimyeloma
activity in vivo. Cancer Cell. 2013;23(4):
502-515.

63. Agnarelli A, Chevassut T, Mancini EJ. IRF4 in
multiple myeloma-Biology, disease and
therapeutic target. Leuk Res. 2018;72:52-58.

64. Shaffer AL, Emre NCT, Lamy L, et al. IRF4
addiction in multiple myeloma. Nature. 2008;
454(7201):226-231.

65. Zhu YX, Shi CX, Bruins LA, et al. Identification
of lenalidomide resistance pathways in
myeloma and targeted resensitization using
cereblon replacement, inhibition of STAT3 or
targeting of IRF4. Blood Cancer J. 2019;9(2):
19.

66. Mondala PK, Vora AA, Zhou T, et al. Selective
antisense oligonucleotide inhibition of
human IRF4 prevents malignant myeloma
regeneration via cell cycle disruption. Cell
Stem Cell. 2021;28(4):623-636.e9.

67. Ueno N, Nishimura N, Ueno S, et al. 1 acts as
tumor suppressor for myeloma cells through
direct transcriptional repression of IRF4.
Oncogene. 2017;36(31):4481-4497.

68. Ohguchi H, Hideshima T, Bhasin MK, et al.
The KDM3A-KLF2-IRF4 axis maintains
myeloma cell survival. Nat Commun. 2016;7:
10258.

69. Fedele PL, Liao Y, Gong JN, et al. The
transcription factor IRF4 represses
proapoptotic BMF and BIM to licence
multiple myeloma survival. Leukemia. 2021;
35(7):2114-2118.
EMBER 2023 | VOLUME 142, NUMBER 19 1645

http://refhub.elsevier.com/S0006-4971(23)01556-2/sref26
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref26
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref26
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref26
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref27
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref27
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref27
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref27
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref28
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref28
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref28
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref28
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref29
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref29
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref29
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref29
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref29
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref29
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref30
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref30
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref30
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref30
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref30
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref31
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref31
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref31
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref32
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref32
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref32
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref32
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref32
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref32
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref33
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref33
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref33
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref33
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref33
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref34
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref34
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref34
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref34
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref35
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref35
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref35
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref35
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref36
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref36
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref36
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref36
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref36
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref37
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref37
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref37
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref37
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref38
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref38
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref38
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref38
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref39
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref39
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref39
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref39
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref40
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref40
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref40
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref40
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref41
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref41
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref41
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref42
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref42
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref42
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref42
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref42
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref42
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref43
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref43
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref43
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref43
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref43
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref44
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref44
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref44
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref44
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref44
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref44
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref45
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref45
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref45
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref46
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref46
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref46
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref46
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref46
https://www.bu.edu/nf-kb/gene-resources/target-genes/
https://www.bu.edu/nf-kb/gene-resources/target-genes/
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref48
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref48
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref48
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref48
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref48
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref49
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref49
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref49
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref50
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref50
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref50
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref50
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref50
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref51
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref51
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref51
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref52
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref52
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref52
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref52
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref52
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref53
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref53
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref53
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref53
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref54
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref54
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref54
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref54
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref54
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref55
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref55
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref55
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref55
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref55
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref55
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref56
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref56
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref56
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref56
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref57
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref57
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref57
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref57
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref57
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref57
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref57
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref58
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref58
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref58
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref58
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref58
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref59
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref59
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref59
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref59
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref60
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref60
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref60
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref60
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref61
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref61
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref61
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref62
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref62
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref62
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref62
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref62
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref62
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref63
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref63
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref63
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref64
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref64
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref64
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref65
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref65
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref65
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref65
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref65
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref65
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref66
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref66
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref66
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref66
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref66
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref67
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref67
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref67
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref67
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref68
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref68
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref68
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref68
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref69
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref69
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref69
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref69
http://refhub.elsevier.com/S0006-4971(23)01556-2/sref69


70. Morelli E, Leone E, Cantafio MEG, et al.
Selective targeting of IRF4 by synthetic
microRNA-125b-5p mimics induces anti-
multiple myeloma activity in vitro and in vivo.
Leukemia. 2015;29(11):2173-2183.

71. Li N, Johnson DC, Weinhold N, et al. Multiple
myeloma risk variant at 7p15.3 creates an
IRF4-binding site and interferes with CDCA7L
expression. Nat Commun. 2016;7:13656.

72. Jin Y, Chen K, De Paepe A, et al. Active
enhancer and chromatin accessibility
landscapes chart the regulatory network of
primary multiple myeloma. Blood. 2018;
131(19):2138-2150.
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