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Abstract 
In eukaryotic cells, protein and RNA factors involved in genome activities like transcription, 
RNA processing, DNA replication and repair accumulate in self-organizing membrane-less 
chromatin subcompartments. These structures contribute to efficiently conduct chromatin me-
diated reactions and to establish specific cellular programs. However, the underlying mecha-
nisms for their formation are only partly understood. Recent studies invoke liquid-liquid phase 
separation (LLPS) of proteins and RNAs in the establishment of chromatin activity patterns. At 
the same time, the folding of chromatin in the nucleus can drive genome partitioning into spa-
tially distinct domains. Here, the interplay between chromatin organization, chromatin binding 
and LLPS is discussed by comparing and contrasting three prototypical chromatin subcom-
partments: the nucleolus, clusters of active RNA polymerase II and pericentric heterochromatin 
domains. It is discussed how the different ways of chromatin compartmentalization are linked 
to transcription regulation, the targeting of soluble factors to certain parts of the genome, and 
to disease-causing genetic aberrations. 

 

Introduction 
In a simplified and coarse-grained view, the interior of the eukaryotic cell nucleus can be sep-
arated into two main compartments: One is chromatin, consisting of the large supramolecular 
complex of genomic DNA wrapped around histone proteins and bound by a large number of 
chromosomal proteins as well as chromatin-associated RNAs. The other compartment is the 
soluble, liquid portion of the nucleoplasm, which is here simply referred to as nucleoplasm. It 
is a highly viscous fluid, rich in dissolved proteins and RNAs that surrounds the chromatin 
compartment. Inert proteins diffuse in a few seconds across the complete nucleus with the 
accessible space being dependent on their size (Baum et al. 2014). Thus, one would expect 
that proteins and RNA are homogeneously distributed in the nucleus unless locally excluded 
due to their size or bound to chromatin. Remarkably, the genome naturally self-organizes on 
the mesoscale by enriching protein and RNA factors into chromatin subcompartments (CSCs) 
that are around 0.1-1 µm in size (Misteli 2001; Cook 2002; Spector 2003; Misteli 2007; 
Wachsmuth et al. 2008; Caudron-Herger and Rippe 2012; Cremer et al. 2015; Cook and 
Marenduzzo 2018; Misteli 2020; Belmont 2021). CSCs are associated with a variety of activi-
ties and direct genome functions like transcription, DNA replication, recombination and repair. 
The exchange of marker proteins between a CSC and the nucleoplasm is surprisingly fast and 
frequently on the second scale, pointing to highly dynamic structures. This process can be 
observed in fluorescence recovery after photobleaching (FRAP) experiments as demonstrated 
in pioneering studies for nucleolar factors like fibrillarin (Phair and Misteli 2000) and RNA pol-
ymerase I (Pol I) (Dundr et al. 2002) in the nucleolus, the RNA polymerase II (Pol II) preinitia-
tion complex (Kimura et al. 2002), linker histone H1 (Lever et al. 2000; Misteli et al. 2000) and 
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heterochromatin protein 1 (HP1) at transcriptionally silenced pericentromeric heterochromatin 
(Cheutin et al. 2003; Festenstein et al. 2003). It is noted that these studies also identified more 
immobile protein fractions that were bound to chromatin on the minute time scale. Thus, there 
appears to be a complex interplay of transient and more long-lived interactions that targets 
proteins to certain parts of the genome to assemble CSCs in a self-organizing manner reliably 
across the cell cycle as discussed previously (Wachsmuth et al. 2008). 

In order to describe the process of CSC formation a definition of the relevant terms in the 
context of this review appears to be warranted. The general description of membrane-less 
cellular subcompartments as “biomolecular condensates” has been used rather broadly for the 
local accumulation of biological macromolecules independent of the formation mechanism 
(Banani et al. 2017; Sabari et al. 2020). On the other hand, in physics the term "condensation" 
and "condensate" is mostly used for a phase transition. Thus, we here suggest to apply “con-
densate” specifically for the assembly of subcompartments that are the product of a phase 
separation process. In contrast, the CSC designation makes no assumptions on the formation 
mechanism and only refers to the local enrichment of protein and/or RNA into a distinct chro-
matin domain on the mesoscopic scale of 0.1-1 µm. The term “liquid” is used here for a state 
in which biological macromolecules can independently change their location randomly in all 
dimensions like molecules in a fluid. Accordingly, the nucleosomes themselves by definition 
cannot be liquid as they are linked via the DNA into a polymeric chain, which constrains their 
individual translocations. This definition differs from other studies that refer to nucleosomes or 
chromatin as “liquid” or “fluid” if they are in a dynamic and disordered state where they retain 
some configurational flexibility relative to each other (Maeshima et al. 2016a; Sanulli et al. 
2019; Maeshima et al. 2020). Here, this type of dynamic organization is referred to as “transient 
interactions” and the fast exchange of factors between the free and bound state in CSC as 
“transient binding” but not as “liquid”. 

 

Mechanisms of chromatin subcompartment formation 

Soluble protein and RNA factors are mostly homogeneously distributed in the nucleoplasm 
(Fig. 1A). Their local enrichment by binding to chromatin can be mapped along the linear DNA 
sequence. This sequencing-based analysis has been conducted for chromosomal proteins 
(Filion et al. 2010), histone modifications (Barski et al. 2007; Ernst et al. 2011) or associated 
RNAs (Li and Fu 2019). Thus, protein or RNA binding at clustered sites leads to the local 
enrichment of these factors (Fig. 1B). Furthermore, it is well established that the nucleosome 
chain folds into distinct 3D conformations via interactions between protein and RNA factors 
bound at distant parts of the nucleosome chain (Fig. 1C). This type of interaction drives the 
dynamic folding of the genome on multiple scales, which could additionally also involve asso-
ciations via liquid droplets (Misteli 2020; Dekker 2021).  
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Fig. 1. Multiple mechanisms for formation of CSCs. (A) Macromolecules in the soluble 
nucleoplasm are homogeneously distributed as diffusion quickly equilibrates concentration 
gradients. (B) Direct or indirect binding to clustered sites on the nucleosome chain can locally 
enrich protein/RNA into a CSC indicated by the dashed line. (C) Bridging interactions induced 
by proteins and/or RNA fold the nucleosome chain into a spatially distinct domain. If a suffi-
cient number of these attractive interactions between chain segments are present, they can 
induce a polymer-polymer phase transition into a condensed chromatin globule. (D) Protein 
and RNA can separate in the nucleoplasm or cytoplasm by undergoing LLPS into a liquid-like 
droplet that is mediated by multivalent interactions. (E) Chromatin-bound proteins and RNA 
could nucleate an LLPS event to accumulate additional protein and RNA factors into a liquid 
droplet. (F) Nucleosomes themselves assemble locally into a disordered state where they 
transiently interact with each other to form an irregular structure that excludes other macro-
molecules based on their size. It is noted that this state would not be called “liquid” here as 
the DNA connection between nucleosomes constrains their translocations relative to each 
other.   

 

One well-established structure on the scale of 1 Mb are topologically associating domains 
(TADs) (Beagan and Phillips-Cremins 2020; Cavalheiro et al. 2021) and their substructures 
(Krietenstein et al. 2020; Szabo et al. 2020; Dekker 2021). The dynamic features of TADs 
observed in living cells are compatible with different polymer folding models (Wachsmuth et 
al. 2016). Transcriptionally active or inactive TADs segregate into distinct A-/B-compartments 
as inferred from chromosome conformation capture analysis, which measures the in situ cross-
linking efficiency of genomic loci (Lieberman-Aiden et al. 2009). If the protein/RNA-mediated 
bridging between parts of the chain exceeds a certain threshold a sharp transition from an 
open random coil conformation into a collapsed chromatin globule can occur. This polymer-
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polymer phase separation process is driven by attractive interaction between segments of the 
chain that induce the transition into a more densely folded chromatin domain (Leibler 1980; 
Williams et al. 1981; Bates 1991; Nicodemi and Pombo 2014; Michieletto et al. 2016; Jost et 
al. 2017; MacPherson et al. 2018) (Fig. 1C). 

The CSCs depicted in Fig. 1B and 1C arise predominantly from the direct chromatin binding 
of protein and RNA factors. Thus, the “null hypothesis” for forming a CSC against which a 
potential phase separation mechanism should be tested is the enrichment of protein and RNA 
factors by (cooperative) binding to a cluster of sites on the nucleosome chain (Fig. 1B). This 
process may also include additional indirect binding of proteins and RNA and can be described 
by well-established ligand binding models (Teif and Rippe 2010; Gutierrez et al. 2012; Phillips 
2015). For example, the DNA sequence-dependent formation of heterochromatin nano-
domains marked by the histone modification H3K9me2/me3 can be rationalized by this type of 
approach (Thorn et al. 2020). To explain how mesoscale proteins and RNA assemblies form 
with sharp boundaries against the surrounding regions, the mechanism of liquid-liquid phase 
separation (LLPS) has been applied (Hyman et al. 2014; Banani et al. 2017; Shin and 
Brangwynne 2017; Boeynaems et al. 2018). It describes the reversible demixing of an origi-
nally homogeneous solutions of proteins and RNA into two distinct fluid-like phases. This pro-
cess can drive the formation of cellular subcompartments by sequestering certain proteins and 
RNAs into a liquid droplet-like state that segregates them from the surrounding solution in 
analogy to the demixing of oil drops and water. A molecular description of this process in the 
cell is given by the “stickers-and-spacers” model (Choi et al. 2020). It represents protein and 
RNA as flexible polymers were sequence motifs of one or more residues, the “stickers”, medi-
ate attractive interactions between different molecules while other parts of the chain act as 
mostly inert “spacers” between them. Above a critical concentration threshold, the stickers on 
the protein/RNA chain can induce a separation into a dense phase that coexists with a dilute 
phase in which the interacting macromolecules are depleted. If interactions in the dense phase 
are weak and transient it has liquid-like properties. However, the same framework can be used 
to also describe gel- or solid-like states with reduced protein/RNA mobility as their interaction 
strength increases (Choi et al. 2020). This LLPS description rationalizes the formation of cyto-
plasmic P granules, membraneless organelles formed by RNA and protein that are involved in 
RNA processing (Brangwynne et al. 2009) (Fig. 1D). LLPS arises via transient multivalent 
interactions and frequently involve RNA and intrinsically disordered protein regions (IDRs), 
creating an exclusionary local protein-RNA environment with distinct physico-chemical prop-
erties (Weber and Brangwynne 2012; Uversky et al. 2015; Banani et al. 2017; Drino and 
Schaefer 2018). It has been suggested to be also a crucial driver of genome organization 
(Erdel and Rippe 2018; McSwiggen et al. 2019b; Strom and Brangwynne 2019; Frank and 
Rippe 2020; Hildebrand and Dekker 2020; Narlikar 2020; Sabari et al. 2020). LLPS at chro-
matin involves directly chromatin-bound protein and RNA factors as nucleation sites so that a 
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liquid droplet assembles at a specific chromatin locus (Fig. 1E). Macromolecules not directly 
bound to chromatin can constantly rearrange and mix within the droplet and access to this type 
of CSC depends on the chemical nature of the CSC components. In contrast, access to a CSC 
formed by bridging interactions of the nucleosome chain (Fig. 1C) is controlled by particle size. 
Other properties like the response to concentration changes of constituting components in 
terms of size change or buffering also differ. Finally, reconstituted mono- and oligonucleosome 
particles have been shown to undergo LLPS in vitro and it has been proposed that this state 
exists also in the cell (Gibson et al. 2019; Sanulli et al. 2019; Wang et al. 2019) (Fig. 1F). 
However, within a chromosome, the DNA linkage between nucleosomes imposes a number of 
constraints with respect to their mobility relative to each other. Confined random translocations 
of the nucleosome chain can occur on the scale of 10-100 nm but on the mesoscopic CSC 
scale chromatin displays solid-like properties (Kimura and Cook 2001; Chubb et al. 2002; 
Gerlich et al. 2003; Walter et al. 2003; Levi et al. 2005; Jegou et al. 2009; Strickfaden et al. 
2010; Chen et al. 2013; Wachsmuth et al. 2016; Maeshima et al. 2020; Strickfaden et al. 2020; 
Maeshima et al. 2021). Thus, liquid-like protein and RNA droplets could nucleate at certain 
points of a mostly immobile chromatin scaffold with confined motions of nucleosomes or parts 
of the chain within this droplet (Fig. 1E). It is noted that the mechanisms depicted in Fig. 1 are 
not mutually exclusive. For example, the binding to clustered sites (Fig. 1B) would be part of 
both the chain folding (Fig. 1C) and LLPS (Fig. 1E) mechanism. In addition, liquid droplets as 
well as nucleosome-nucleosome interactions (Fig. 1F) could also act as bridging factors to 
promote folding of the chain into a compacted state. 

 

Formation of transcriptionally active or silenced CSCs 

In the following, we will not consider phase separation into mostly irreversible gel or aggre-
gated states as it is a crucial feature of functional CSCs that they are dynamic and can form 
reversibly in a self-organizing manner across the cell cycle. Rather the focus is on three pro-
totypical CSCs, the nucleolus, clusters of Pol II referred to as transcription factories as well as 
chromocenters. LLPS has been suggested to be operative for all three of them (Table 1) and 
several of their purified constituting marker proteins can undergo LLPS in vitro (Table 2). The 
review will use them as exemplary cases to discuss how their dynamic structure, material 
properties and biological activities are related to an LLPS process for their formation in com-
parison to alternative mechanisms. More general discussions of phase-separated processes 
that involve chromatin can be found elsewhere (Erdel and Rippe 2018; McSwiggen et al. 
2019b; Strom and Brangwynne 2019; Frank and Rippe 2020; Hildebrand and Dekker 2020; 
Narlikar 2020; Sabari et al. 2020). 

Nucleolus. The nucleolus is a prototypic CSC for an LLPS-driven formation mechanism 
(Brangwynne et al. 2011; Feric et al. 2016; Caragine et al. 2019; Lafontaine et al. 2021). Its 
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structure is characterized by the association of hundreds of nucleolar proteins around the nu-
cleolar organizer regions containing the ribosomal DNA gene repeats (rDNA) from different 
chromosomes from which large amounts of rRNA are transcribed (Mangan et al. 2017; Nemeth 
and Grummt 2018; Lafontaine et al. 2021). In the nucleolus key marker proteins like Pol I, 
fibrillarin (FBL), nucleolin (NCL), and nucleophosmin (NPM1) are highly enriched together with 
the ribosomal RNA and form a sharp concentration boundary to the surrounding nucleoplasm. 

 

Table 1. Features of exemplary CSCs for which formation by a phase separation 
mechanism has been proposed in relation to the surrounding nucleoplasm 

CSC Nucleolusa Pol II transcription  
factoriesb 

Chromocentersc 

Organism Human Human, Mouse Mouse, Drosophila 

Marker proteins Pol I, NPM1, NCL, 
FBL, UBF 

Pol II, TAF15, BRD4, 
MED1/19, specific TFs HP1α, MeCP2, H1 

Structure Heterogeneous Diverse Granular (HP1α, DNA) 
Exchange with 
nucleoplasm Seconds-minutes Seconds-minutes Seconds-minutes 

Internal mixing Yes ? No 

Fusion Yes ? Yes 

Accessibility Chemical properties ? Size 

Protein/DNA ratio High High Average 

RNA/DNA ratio Very high High Average 

Local viscosity Increased ? Average 

Architectural 
RNA component rRNA, aluRNA Nascent RNAs, enhancer 

RNAs, LINE1, aluRNA Major satellite RNA 

a (Andersen et al. 2005; Nemeth et al. 2010; Brangwynne et al. 2011; Caudron-Herger et al. 2015b; 
Martin et al. 2015; Feric et al. 2016; Nemeth and Grummt 2018; Caragine et al. 2019; Frottin et al. 2019; 
Yao et al. 2019; Ide et al. 2020; Lafontaine et al. 2021; Lawrimore et al. 2021). b (Melnik et al. 2011; 
Ghamari et al. 2013; Papantonis and Cook 2013; Caudron-Herger et al. 2015a; Hnisz et al. 2017; Cho 
et al. 2018; Chong et al. 2018; Sabari et al. 2018; Guo et al. 2019; Nair et al. 2019; Quintero-Cadena et 
al. 2020; Sabari et al. 2020; Wei et al. 2020; Garcia et al. 2021b; Hilbert et al. 2021; Ma et al. 2021). 
c (Peters et al. 2001; Brero et al. 2005; Lu et al. 2009; Cao et al. 2013; Muller-Ott et al. 2014; Saksouk 
et al. 2014; Bosch-Presegue et al. 2017; Strom et al. 2017; Ostromyshenskii et al. 2018; Jagannathan 
et al. 2019; Erdel et al. 2020; Kochanova et al. 2020). 
 
Pol II transcription factories. Transcriptionally active CSCs enriched with Pol II have been char-
acterized as transcription factories (Jackson et al. 1993; Iborra et al. 1996; Osborne et al. 
2004). They accumulate transcription factors, RNA and both promoter/enhancer DNA loci 
(Jackson et al. 1993; Iborra et al. 1996; Osborne et al. 2004). A number of previous studies 
have studied their features as well as their function as self-assembling organizers of the ge-
nome (Cook 2002; Chakalova et al. 2005; Papantonis and Cook 2013; Buckley and Lis 2014; 
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Cook and Marenduzzo 2018). In recent studies, the IDR mediated assembly of specific tran-
scription factors (TFs) like SP1, OCT4, b-catenin, STAT3, estrogen receptor (ER) and SMAD3, 
the TBP associated general transcription factor TAF15 as well as transcriptional co-activators 
like MED1/19, GCN4 and BRD4 and the unstructured C-terminal domain (CTD) of Pol II into 
so-called transcriptional condensates has been described as a phase separation process 
(Hnisz et al. 2017; Frank and Rippe 2020; Peng et al. 2020; Sabari et al. 2020). 

Chromocenters. Pericentric repeat sequences assemble into compact heterochromatin do-
mains in mouse and Drosophila cells called chromocenters due to their strong fluorescence 
after DAPI staining (Probst and Almouzni 2008; Fodor et al. 2010). They contain mostly major 
satellite repeat sequences but also other types of repeats (Ostromyshenskii et al. 2018; 
Jagannathan et al. 2019). Recent work concluded that this type of CSC arises from HP1-driven 
LLPS that condenses chromatin (Larson et al. 2017; Strom et al. 2017; Fan et al. 2020; Li et al. 
2020a; Wang et al. 2020) according to the scheme depicted in Fig. 1E. However, another study 
reported that chromocenters form independently of HP1 by polymer-polymer phase separation 
into a chromatin globule (Fig. 1C) (Erdel et al. 2020). 
 
Table 2. CSC marker proteins that can undergo LLPS in vitro 

Protein Abbreviation CSC Reference 

Nucleophosmin NPM1 
Nucleolus 

(Feric et al. 2016; Mitrea et al. 
2016; Mitrea et al. 2018)  

Fibrillarin FBL/FIB (Berry et al. 2015; Feric et al. 2016) 

Carboxyterminal domain 
of Pol II CTD 

Pol II tran-
scription facto-

ries 

(Kwon et al. 2013; Boehning et al. 
2018; Lu et al. 2018) 

TATA-Box binding protein 
associated factor 15  

TAF15 (Chong et al. 2018) 

p300/CREB-binding pro-
tein 

p300/CBP (Ma et al. 2021) 

Bromodomain-containing 
protein 4 

BRD4 (Sabari et al. 2018) 

Mediator subunits 1/19 MED1, 
MED19 

(Cho et al. 2018; Sabari et al. 2018; 
Guo et al. 2019; Zamudio et al. 
2019) 

Heterochromatin protein 1 HP1/α/β/γ, 
HP1a 

Chromocenter 
(pericentric 

heterochroma-
tin)  

(Larson et al. 2017; Strom et al. 
2017; Wang et al. 2019; Erdel et al. 
2020; Qin et al. 2021) 

Methyl CpG binding pro-
tein 2 

MeCP2 (Fan et al. 2020; Li et al. 2020a; 
Wang et al. 2020) 

Linker histone H1 H1 (Gibson et al. 2019; Shakya et al. 
2020; Muzzopappa et al. 2021) 
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High-resolution structure 

A CSC formed by LLPS would be expected to show a homogeneous distribution of a given 
marker protein within the droplet (Fig. 1E). However, other types of local protein enrichment 
(Fig. 1B, C) could also appear like a dense spherical structure at the limited resolution of light 
microscopy. This is illustrated by labeling endogenous intronic repeat sequence in the MUC4 
gene with dCas9-GFP, which results in punctuate structures with an apparent size of 0.5-
0.8 µm (Chen et al. 2013). Thus, high-resolution CSC structures obtained with electron mi-
croscopy or fluorescence super-resolution microscopy methods are more informative to distin-
guish between protein-/RNA filled droplets as opposed to chromatin bound factors.  

Nucleolus. In mammals, the nucleolus is structured into three domains clearly distinguishable 
in electron microscopy images (Thiry et al. 2011). Pol I is enriched in the fibrillar centers (FCs) 
and the actively transcribed rRNA genes (rDNA) are located at the interface between fibrillar 
centers (FCs) and dense fibrillar components (DFCs). The upstream binding factor (UBF), a 
key regulatory factor of rDNA transcription, is associated with both active and poised repeats 
at the DC/DFC border (Maiser et al. 2020). The resulting pre-rRNA is processed and assem-
bled with ribosomal proteins in the DFC and in the granular component (GC), which is enriched 
in NPM1 and NCL. This internal compartmentalization can be rationalized as three coexisting, 
immiscible liquid-like phases (Feric et al. 2016; Lafontaine et al. 2021). Fluorescence micros-
copy super-resolution images are in line with this model as the distribution of marker proteins 
such as Pol I, FBL, NPM1 and NCL is quite homogeneous in the respective nucleolar subcom-
partments (Yao et al. 2019; Maiser et al. 2020; Lafontaine et al. 2021). However, it is also 
apparent that further fine structure exists for the organization of the actively described rDNA. 
These loci adopt a ring-shaped conformation of ~170 nm and ~240 nm in diameter in human 
and mouse fibroblasts, respectively (Maiser et al. 2020). Another study shows that FBL forms 
small clusters in the DFC of 50 nm in size spaced 100-200 nm apart (Yao et al. 2019).  

Pol II transcription factories. Clusters of Pol II have been initially described as comprising 4-30 
active polymerases that assemble around a protein-rich core with two or more transcription 
units with diameters of 50−180 nm in diploid human cell (Rieder et al. 2012; Papantonis and 
Cook 2013). The initial characterization of Pol II factories was conducted in fixed cells. Subse-
quent fluorescence microscopy analysis in living cells yielded similarly sized Pol II clusters of 
220 nm (Cisse et al. 2013) as well as foci of CDK9, a kinase associated with active Pol II 
(Ghamari et al. 2013). Furthermore, active Pol II constrains chromatin movements, supporting 
the view that transcription factories link chromatin loci (Nagashima et al. 2019). Recent studies 
investigated the structure of active Pol II compartments in the context of a phase separation 
mechanism (Cho et al. 2018; Hilbert et al. 2021). The analysis of endogenously tagged MED1 
and Pol II in mouse embryonic stem cells points to the existence of two different types of su-
pramolecular complexes (Cho et al. 2018). One is relatively small (~100 nm) and instable with 
average lifetimes on the 10 second scale. The other population of larger clusters (>300 nm) 
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with ~200 to 400 molecules persists for several minutes. Another study characterized Pol II 
transcription compartments in zebrafish cells (Hilbert et al. 2021). Clusters of active Pol II were 
present in µm sized regions enriched in RNA but depleted of chromatin with the active tran-
scription sites of 100-200 nm in size being located at the RNA-chromatin interface. 

Chromocenters. The current high resolution structural data on chromocenters comprise elec-
tron and super-resolution fluorescence microscopy (Fussner et al. 2012; Erdel et al. 2020; 
Kochanova et al. 2020; Miron et al. 2020; Strickfaden et al. 2020; Xu et al. 2020). The results 
point to irregularly shaped domains with condensed chromatin in a granular structure in mouse 
cells with HP1 and H3K9me3 enrichment following the chromatin density (Erdel et al. 2020). 
Methyl-CpG-binding protein 2 (MeCP2) and linker histone H1 are also enriched in chromocen-
ters but their fine structure is difficult to assess in the analysis conducted so far (Misteli et al. 
2000; Cao et al. 2013; Muller-Ott et al. 2014; Linhoff et al. 2015). In Drosophila the chromo-
center organization appears to be less granular and distinct with a multilayer organization of 
marker proteins (Jagannathan et al. 2019; Kochanova et al. 2020). 

Internal mixing of marker proteins in CSCs and exchange with the nucleoplasm 

The fast exchange of a large fraction of CSC marker proteins points to highly dynamic struc-
tures that nevertheless stably direct genome-associated activities to specific loci. LLPS could 
confine the translocations of protein and factors to the interior of the resulting liquid droplets 
so that they become segregated from the surrounding nucleoplasm (Fig. 1E). In this environ-
ment they are concentration-buffered and maintain a steady concentration of molecules 
against external fluctuations that would only affect the droplet size (Banani et al. 2017) 
(Fig. 2A). The CSC types depicted in Fig. 1B and Fig. 1C on the other hand are permeated 
by soluble factors from the surrounding nucleoplasm. Access to the CSC is determined by the 
size of the macromolecule. For this type of CSC, factors can quickly exchange with the sur-
rounding nucleoplasm and the domain size should be mostly unaffected by concentration 
changes (Erdel and Rippe 2018; Frank and Rippe 2020). However, at sufficiently high concen-
trations the bivalent attractive bridging interactions between chromatin segments could be 
competed out by monovalent chromatin interactions of the linking factors (Malhotra et al. 2021) 
(Fig. 2A). A fast exchange of bound proteins with the surrounding nucleoplasm that is meas-
ured in conventional FRAP can be explained simply by a short residence time in the chromatin 
bound state and does not represent evidence for the formation of a liquid droplet (McSwiggen 
et al. 2019b). The hallmark feature of LLPS that molecules can mix within the compartment 
like in a fluid can be evaluated by bleaching only half of the subcompartment and analyzing 
exchange of molecules with the unbleached half (Fig. 2B) (Brangwynne et al. 2009; Patel et 
al. 2015; Erdel et al. 2020). The resulting part of fluorescence recovery is then compared to 
the exchange with molecules from the surrounding nucleoplasm, which provides information 
on the permeability of the compartment boundary (Erdel et al. 2020). 
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Fig. 2. Experimental approaches to analyze CSC assembly in the cell nucleus. (A) Re-
sponse of CSCs to concentration changes. Top: Increasing the concentration of constituting 
proteins/RNAs is expected to expand liquid droplets while maintaining their internal distribu-
tion (Banani et al. 2017). Bottom: Bivalent chromatin cross-linking could be disrupted at high 
concentration of bridging factors (Malhotra et al. 2021). (B) Half-bleach FRAP evaluates in-
ternal mixing and permeability of the boundary (Erdel et al. 2020). Simulated temporal inten-
sity traces for low, intermediate and high permeability are depicted, for a time axis normalized 
for differences in the diffusion coefficient by division to the diffusion time τD. (C) Light-induced 
formation of liquid droplets (Shin et al. 2017). In this assay the protein of interest is fused to 
the PHR domain, which promotes multivalent interactions and droplet formation upon illumi-
nation with blue light. This allows it to evaluate the effect of an artificially induced LLPS on the 
activity of a chromatin locus of interest, e.g., to study transcription activation. Furthermore, the 
stability of the resulting droplets can be assessed from their persistence in the absence of the 
light trigger. 
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An alternative approach to FRAP is the tracking of single fluorescently labeled particles as has 
been done for transcription factors (Chen et al. 2014; Kent et al. 2020; Garcia et al. 2021a; 
Garcia et al. 2021b). It provides direct information on the confinement of particle mobility but 
is typically limited to observation periods in the ~20 sec range due to loss of the fluorescence 
signal over time.    

Nucleolus. Pol I and UBF have residence times on the 10-seconds to minute scale in the nu-
cleolus, with prolonged retention at rDNA promoters upon activation (Chen and Huang 2001; 
Dundr et al. 2002; Gorski et al. 2008). Likewise, FBL, NPM1 and NCL show complete recovery 
in FRAP experiments on the 10-20 second time scale (Phair and Misteli 2000; Chen and 
Huang 2001; Dundr et al. 2002; Gorski et al. 2008; Frottin et al. 2019; Erdel et al. 2020). Inter-
estingly, NPM1 displays preferred internal mixing within the nucleolus, a feature indicative of 
liquid droplet formation, which was less pronounced for NCL (Erdel et al. 2020) (Fig. 2B). 
Nucleolar access or exclusion is dependent on the chemical nature of a protein and less so on 
its size as expected for a LLPS compartment. In particular, certain peptides can carry a nucle-
olar localization signal that lacks defined sequence motifs and the exclusion of wild-type GFP 
was reverted by fusion of a small arginine-rich and positively charged peptide (Martin et al. 
2015). Finally, it is noted that nucleoli are remarkably stable during their purification, which 
includes dilution/washing through multiple steps and allows for characterization of their protein, 
DNA and RNA content (Andersen et al. 2005; Nemeth et al. 2010; Caudron-Herger et al. 
2015b). This property is difficult to reconcile with a reversible liquid droplet state, which would 
disassemble upon removing its constituting components from the surrounding solution. 

RNA polymerase II transcription factories. Several FRAP studies evaluated the dynamic prop-
erties of Pol II complexes at chromatin (Becker et al. 2002; Kimura et al. 2002; Hieda et al. 
2005; Darzacq et al. 2007). In these experiments, the Pol II fraction recovering over 10–20 
minutes was assigned to the elongating state. In contrast the putative preinitiation complex 
was very dynamic and recovered within seconds after bleaching. These findings are in line 
with studies that report Pol II residence times in clusters of 5-10 seconds (Cisse et al. 2013; 
Cho et al. 2018) and that foci of the CDK9 kinase, which associates with active Pol II, exchange 
within seconds (Ghamari et al. 2013). In addition, these studies also report the existence of 
more long-lived complexes stable on the minute time scale or even for hours. In general, tran-
scription factors show highly dynamic and stochastic binding with typical residence times of 
seconds (Mueller et al. 2013; Lionnet and Wu 2021; Lu and Lionnet 2021). In many instances, 
the residence times at their target promoter sites appear to be in the range of less than a 
minute although longer times have also been reported. Likewise, estrogen receptor α (ERα) 
(Nair et al. 2019) as well as SOX2 (Chen et al. 2014) were specifically bound for 10-20 s at 
their enhancers together with other TFs. However, the view of the chromatin residence time is 
bimodal and reflects essentially either specifically or non-specifically bound complexes might 
be too simplistic. A recent study concluded that several TFs (including ERα, FOXA1 and 
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CTCF) follow a power-law distribution of residence times and may involve longer binding 
events in the right-skewed tail of the distribution than previously derived from bi-exponential 
models (Garcia et al. 2021a).  

Chromocenters. HP1, a marker protein enriched at transcriptionally silenced pericentromeric 
heterochromatin domains, exchanges within seconds with the nucleoplasm (Cheutin et al. 
2003; Festenstein et al. 2003). However, this exchange arises predominantly by diffusion of 
factors from the nucleoplasm surrounding chromocenters in mouse fibroblast cell lines (Erdel 
et al. 2020). Neither HP1 nor MeCP2 displayed preferential internal mixing within chromocen-
ters in half-bleach FRAP experiments (Fig. 2A) as expected from a liquid-like droplet. MeCP2 
is relatively stably bound in chromocenters with 65% of the protein displaying a residence time 
of 25 s and around 20% of protein binding for more than four minutes (Ghosh et al. 2010; 
Agarwal et al. 2011; Muller-Ott et al. 2014). In Drosophila, the mobility of HP1a in chromocen-
ters as measured by FRAP was highest at the early embryo stage (Strom et al. 2017). Subse-
quently, the fraction of immobile HP1a increased from 0% (nuclear division cycle 10) to 30% 
(cycle 14), pointing to a change of chromocenter organization during differentiation. Another 
interesting observation in the context of chromocenter protein mobility is it that KMT5C (SUV4-
20H2) that trimethylates histone H4 at lysine 20 shows preferential mixing within mouse chro-
mocenters (Strickfaden et al. 2020). Furthermore, its FRAP dynamics are dependent on the 
three different HP1 isoforms (Bosch-Presegue et al. 2017). The formation of a liquid droplet 
state of SUV4-20H2, however, is difficult to reconcile with its very tight binding (immobile frac-
tion >90% on the minute time scale) and low abundance of 200 nM concentration in chromo-
centers (Muller-Ott et al. 2014). It will be therefore important to further characterize the origin 
of the confined mobility of SUV4-20H2. Another important factor for the dynamic structure of 
chromocenters is linker histone H1 that displays complex isoform specific interactions with 
chromatin and is involved in its compaction (Prendergast and Reinberg 2021). In the initial 
characterization of linker histone H1 binding by FRAP, the immobile fraction at chromocenters 
was increased by 10-25% (Misteli et al. 2000). Subsequent FRAP studies provided evidence 
for at least two different H1 chromatin-bound states established by simultaneous interactions 
of the H1 globular and C-terminal domain to different DNA regions (Brown et al. 2006; 
Stasevich et al. 2010; Wachsmuth et al. 2016). The longer-lived fraction shows a residence 
time of ~100 s and is likely to drive the linker histone-mediated packaging of nucleosomes 
(Maeshima et al. 2016b).  

DNA, RNA and protein content and local viscosity 

CSC formed by an LLPS mechanism (Fig. 1E) are expected to have a particularly high pro-
tein/DNA or RNA/DNA ratio as compared to the nuclear average. These parameters are com-
pared for the nucleolus, Pol II factories and chromocenters in Table 1. The DNA (Nemeth et 
al. 2010), protein (Andersen et al. 2005) and RNA (Caudron-Herger et al. 2015b) content of 
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the nucleolus have been mapped and it is estimated that the DNA concentration in the nucle-
olus is about 20-fold lower while its protein content is 2-fold higher than in the surrounding 
parts of the nucleus. At the same time, the nucleolus is filled with ribosomal and other RNAs 
leading to a ~2,000-fold higher RNA/DNA ratio and ~40-fold higher protein/DNA ratio (Frank 
and Rippe 2020). Despite its low relative concentration, however, the rDNA sequences play 
an important role in nucleating the RNA-dependent assembly of the nucleolus (Grob et al. 
2014; Berry et al. 2015; Falahati et al. 2016; Nemeth and Grummt 2018; Lafontaine et al. 
2021). Thus, the composition of the nucleolus is quite similar to that of a cytoplasmic protein-
RNA body (Fig. 1D) and fits well to a chromatin nucleated LLPS mechanism (Fig. 1E) 
(Lafontaine et al. 2021). Analysis of the protein (Melnik et al. 2011) and RNA content (Caudron-
Herger et al. 2015a) of Pol II transcription show that for a relatively small factory size of 
50−180 nm diameter the RNA/DNA ratio could be almost as high as that in the nucleolus 
(Jackson et al. 1998) and a high protein/DNA ratio is also estimated (Melnik et al. 2011). For 
mouse chromocenters, their DNA content has been determined after purification with major 
satellite repeats being the dominating component but also contain a 2 kb LINE element 
(Zatsepina et al. 2008; Ostromyshenskii et al. 2018). The total DNA concentration in chromo-
centers is about two-fold higher than the nuclear average (Muller-Ott et al. 2014). The proteins 
associated with the major satellite repeats have been mapped (Saksouk et al. 2014) and their 
chromocenter concentration is in general less than 5% of the nucleosome concentration 
(Muller-Ott et al. 2014). Thus, compared to the nuclear average, chromocenters display an 
average protein/DNA and low/average RNA/DNA ratio as their transcriptionally activity is si-
lenced under normal conditions. 

In summary, the high protein/DNA and RNA/DNA ratios of the nucleolus and Pol II transcription 
factories distinguish these CSCs from the surrounding nucleoplasm. The high local protein-
protein and RNA that result from LLPS are expected to lead to an increased viscosity of the 
dense phase as shown previously for NPM1 and the nucleolus (Hyman et al. 2014; Feric et al. 
2016). In contrast, the local intracellular viscosities in chromocenters as measured by polari-
zation-dependent FCS is similar to that of the surrounding euchromatic regions (Erdel et al. 
2020). Thus, it appears that high protein/DNA and RNA/DNA ratios will correlate with liquid-
like CSC features and an increased local viscosity. Vice versa CSCs like mouse chromocen-
ters that display average RNA/DNA and protein/DNA ratios and no significant viscosity differ-
ences may be less likely to be formed by LLPS.  

 

Structure-function relationships 

The different mechanisms that confine genome-associated activities by establishing CSCs 
(Fig. 1) lead to distinct structure-function relationships. In general, two main functional aspects 
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are apparent. One is to target macromolecules to certain parts of the genome, while the other 
is the formation of a specific local environment that enhances chromatin-mediated reactions.  

Nucleolus. A number of findings show that the intact nucleolus structure and LLPS properties 
are directly linked to efficient ribosome biogenesis (Lafontaine et al. 2021). The tripartite nu-
cleolar architecture of FC, DFC and GC is disrupted if Pol I or Pol II transcription is inhibited 
(Caudron-Herger et al. 2015b; Caudron-Herger et al. 2016). At the same time, dispersed pre-
nucleolar bodies containing NCL, NPM and FBL that assemble post-mitotically at the nucleolar 
organizer regions to re-form the nucleolus only have a low rRNA content (Carron et al. 2012; 
Nemeth and Grummt 2018). Highly proliferating tumor cells, on the other hand, harbor larger 
and more active nucleoli for high rRNA and ribosome production (Derenzini et al. 2000; 
Montanaro et al. 2008; Weeks et al. 2019). In addition, cells from patients suffering from neu-
rodegenerative diseases often present with less active nucleoli with structural aberrations 
(Parlato and Kreiner 2013). Such a correlation of size and activity would be expected for an 
LLPS-driven mechanism, in which a concentration increase of rRNA could increase the droplet 
size (Fig. 2A). Furthermore, it is well established that LLPS can create an environment with 
an increased local concentration of protein and RNA factors and enhance enzymatic (O'Flynn 
and Mittag 2021). Within the fully assembled nucleolus a multi-phase LLPS event could serve 
to compartmentalize rDNA transcription, rRNA processing and rRNA-ribosomal protein assem-
bly (Feric et al. 2016). Interestingly, also repression of Pol I in the nucleolar cap has been 
reported by formation of a phase-separated subcompartment (Ide et al. 2020). The liquid-like 
properties of these distinct subcompartments within the nucleolus could also be important for 
quality control of misfolded proteins (Frottin et al. 2019). According to the latter study, the 
granular component of the nucleolus with its liquid-like phase prevents the irreversible aggre-
gation of misfolding of proteins during heat shock. 

Pol II transcription factories. For Pol II transcription factories providing specificity of gene reg-
ulation as well as promoting efficient transcription are important functional aspects (Papantonis 
and Cook 2013). It is, however, currently not clear what the driving mechanism of formation 
for this type of CSC is and how the formation mechanism would affect transcription. For ex-
ample, the enrichment of Pol II and transcription factors in replication compartments of the 
herpes simplex virus appears to be mostly driven by locally enhanced chromatin binding (Fig. 
1B) due to creating nucleosome free regions (McSwiggen et al. 2019a). Furthermore, model-
ling studies show that bridging interactions of TFs as depicted in Fig. 1C would suffice for the 
formation of Pol II transcription factories with a 3D organization similar to that found in the cell 
(Brackley et al. 2013). 

The functional consequences of TF liquid droplet were studied with synthetic activator con-
structs using the approach of light-induced droplet formation depicted in Fig. 2C (Wei et al. 
2020; Schneider et al. 2021). In these studies, it was concluded that droplets formed by TF 
fusion constructs increase gene expression or transcription activation, supporting the view that 



 15 

LLPS of TFs and co-activators induces high transcription activity (Hnisz et al. 2017; Sabari et 
al. 2018; Sabari et al. 2020). However, corroborating these conclusions would require a com-
parison of TF activation capacity of the same factor in the presence/absence of LLPS under 
identical conditions (Fig. 3). It is noted that the propensity of a given TF or co-activator to 
undergo LLPS in vitro might simply reflect its ability to engage in multivalent interactions. These 
multivalent interactions could also promote interactions and enhance transcription activation 
in the absence of phase separation (Cho et al. 2018; Trojanowski et al. 2021). One alternative 
function would be that IDRs increase the kinetic rate for the formation of a specific complex 
between proteins and/or nucleic acids (Pontius 1993). In such a mechanism IDRs stabilize an 
intermediate state that allows the interacting factors to sample different orientations to each 
other, which increases the probability of specific complex formation during a diffusive encoun-
ter. Accordingly, it will be important to further dissect how IDRs modulate the interplay of inter-
actions that differ in strength and specificity between TFs, co-activators and parts of the gen-
eral transcription machinery in relation to the transcriptional output. 

 

 

Fig. 3. Multivalent interactions, chromatin binding and LLPS. Direct chromatin binding 
of a TF is accompanied with indirect interactions of coactivators like histone acetylases, 
BRD4 or components of the mediator complex that enhance transcription. LLPS would 
largely increase the amount of indirectly bound factors. It would also lead to a sharp con-
centration boundary between the droplet and the nucleoplasm while indirectly chromatin-
bound factors would be expected to show a concentration decrease as the distance from 
the directly chromatin-bound TFs becomes larger. Furthermore, it is currently not clear if the 
formation of a liquid droplet around a given promoter would indeed increase transcription as 
proposed in a number of studies as compared to the indirect binding of coactivators depicted 
on the left side of the scheme.  

 

On the mesoscale, liquid droplet formation itself could also accelerate the binding reaction of 
TFs and/or co-activators to their target sites (Brodsky et al. 2020; Kent et al. 2020; Garcia et 
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al. 2021b). Confining a random search process to a chromatin-associated droplet and increas-
ing the local concentration of a given factor could greatly increase its kinetic binding rate. Fi-
nally, several studies link the IDR-mediated formation of liquid droplets to the phenomenon of 
“transcriptional bursting” where the promoter enters a refractory state after being in a period of 
active transcription for several minutes (Rodriguez and Larson 2020). The propensity of tran-
scription factor activation domains to form liquid droplets with the transcription factor p300 as 
well as the length of the Pol II CTD correlates with an increased frequency and longer duration 
of transcriptional bursts (Quintero-Cadena et al. 2020; Ma et al. 2021). Remarkably, Quintero-
Cadena et al. also show in their study that the loss of Pol II activity due to shortening the CTD 
can be partially rescued by fusion with an IDR from FUS or TAF15. The stability of the putative 
LLPS-driven condensates formed via these IDR interactions could be dependent on their RNA 
content as shown for MED1-IDR droplets in vitro (Henninger et al. 2021). These findings raise 
the possibility that transcriptional bursting arises from the periodic formation and disruption of 
an activating liquid droplet state formed between IDRs of Pol II, TFs and co-activators and 
nascent RNA. However, the switching of a given gene between an active and silent state can 
also explained by the promoter proximal and distal binding and dissociation of regulators and 
their chromatin mediated interactions with the transcription machinery (Rodriguez and Larson 
2020). 

Chromocenters. The assembly of intact chromocenters is linked to chromosome segregation 
and silencing of repeat transcription (Probst and Almouzni 2008; Fodor et al. 2010; Janssen 
et al. 2018). How these functions might be affected by proposed LLPS events of relevant chro-
mocenter proteins like HP1, MeCP2 or H1 is currently not clear. It is noted that a number of 
studies show that global compaction, accessibility and size of mouse chromocenters is largely 
independent of HP1 (Peters et al. 2001; Schotta et al. 2004; Mateos-Langerak et al. 2007; 
Bosch-Presegue et al. 2017; Erdel et al. 2020). Notably, the knock-out of HP1α, which has 
been proposed to be crucial for LLPS in mammalian heterochromatin (Larson et al. 2017; 
Wang et al. 2019), has no apparent phenotype in mice (Aucott et al. 2008; Singh 2010; Mattout 
et al. 2015). The chromocenter structure in HP1α-/-, HP1β-/- and HP1γ-/- knockouts in mouse 
embryonic fibroblasts was mostly unaffected on the mesoscale in terms of DNA compaction 
as compared to wild type cells (Bosch-Presegue et al. 2017). MNase digestion experiments in 
the latter study point to a decrease in accessibility at nucleosome resolution of chromocenters 
if HP1α is lost. Likewise, structural phenotypes of chromocenters in differentiated Drosophila 
cells at the mesocale are not associated with HP1 but rather with two sequence-specific sat-
ellite DNA-binding proteins, D1 and Prod (Jagannathan et al. 2019). In embryonic cells, how-
ever, HP1a binding is required to establish the clustering of pericentromeric regions and the 
overall chromosome folding, while it is dispensable in differentiated cells for these functions 
(Zenk et al. 2021). Thus, multiple studies arrive at the conclusion that HP1 does not induce 
chromatin compaction in differentiated cells. Rather, chromocenter-specific interactions of 
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HP1, which can act as a transcription repressor (Hathaway et al. 2012), might prevent spurious 
induction of satellite repeat transcription (Erdel et al. 2020). In this manner, HP1 would stabilize 
the transcriptional silencing of a collapsed chromatin globule (Fig. 1C) rather than forming liq-
uid droplets (Fig. 1E). On the other hand, MeCP2, linker histones and KMT5C are important 
for the structural integrity of chromocenters. MeCP2 induces clustering of pericentric hetero-
chromatin upon overexpression in mouse myoblasts (Brero et al. 2005) and it could thus be 
involved in changes of chromocenter structure. In fact, mutations of MeCP2 that cause Rett 
syndrome, a severe neurological disorder, have recently been proposed to be detrimental be-
cause they prevent the formation of liquid droplets in vitro (Fan et al. 2020; Li et al. 2020a; 
Wang et al. 2020). It is noted, however, that the structural phenotype of these MeCP2 muta-
tions has been rationalized previously as being the result of perturbed chromatin interactions 
that decrease the ability of MeCP2 to compact heterochromatin (Agarwal et al. 2011). In addi-
tion, in neurons, loss of MeCP2 is accompanied by redistribution of the H3K20me3 modifica-
tion at chromocenters (Linhoff et al. 2015). Furthermore, linker histones are highly abundant 
in the nucleus at a stoichiometry of about 0.7 H1 per nucleosome (Fan et al. 2003) and en-
riched at mouse chromocenters (Cao et al. 2013). Their depletion leads to chromocenter clus-
tering and de-repression of the major satellite repeat sequences in them (Cao et al. 2013; 
Healton et al. 2020). In Drosophila H1 is also required for the structural integrity of chromo-
centers (Lu et al. 2009). Since linker histones have been shown to undergo LLPS in vitro 
(Gibson et al. 2019; Shakya et al. 2020; Muzzopappa et al. 2021) it will be important to inves-
tigate if H1 at chromocenters in the cell displays material properties indicative of its accumu-
lation via LLPS. It is noted, however, that the ability of H1 to form liquid droplets is lost with 
increasing DNA length, which promotes the formation of more solid-like aggregates 
(Muzzopappa et al. 2021). Finally, KMT5C is enriched at chromocenters and mediates 
changes of pericentric repeat organization and chromatin accessibility (Hahn et al. 2013). As 
discussed above its mobility appears to be confined to chromocenters (Strickfaden et al. 2020), 
which makes it an interesting protein for further investigation of LLPS at chromocenters. Apart 
from dissecting the contributions of factors beyond HP1 to the dynamic chromocenter organi-
zation it will be important to further investigate embryonic cells. In these cells in Drosophila, 
the chromocenter mobility of HP1a is increased (Strom et al. 2017) and the protein is required 
for the 3D organization of pericentromeric heterochromatin (Zenk et al. 2021).  

 

Assessing the contribution of LLPS to the structure of the nucleolus, Pol II 
transcription factories and chromocenters 

With respect to the three CSCs compared here, the following tentative assignment is made: 
Evidence for a CSC formed in the cell by LLPS is currently strongest for the nucleolus, which 
has a number of features in support of this mechanism. These comprise liquid-like properties 
of constituting factors, transitions between coalescent and dispersed states and an increased 
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local viscosity as discussed above. These features are likely to be related to its unusual com-
position with respect to the high enrichment of RNA and proteins and very low DNA content. 
Thus, the overall properties of the nucleolus are dominated by multivalent interactions of pro-
tein and RNA. The direct association of these factors with the DNA of the nucleolar organizer 
regions makes a relatively small contribution albeit being important for nucleating and targeting 
the assembly. It is noted that the transcribed rDNA locus adopts a folded conformation (Maiser 
et al. 2020) and a recent study in budding yeast reports that it forms distinct condensates by a 
polymer-polymer phase separation (Fig. 1C) within an LLPS subcompartment of ribonucleo-
proteins (Lawrimore et al. 2021).  

For Pol II transcription factories or transcriptional condensates, it is difficult to conclude at this 
stage by which mechanism they form. Several lines of evidence indicate that multivalent inter-
actions mediated by IDRs are important to form the active transcription machinery. Thus, many 
of the factors involved in transcription activation have a high propensity to undergo LLPS as 
demonstrated with purified proteins in vitro. However, evidence that such a phase separation 
indeed occurs under endogenous conditions in the cell is scarce. Rather, multivalent interac-
tions of IDRs might simply mediate protein-protein interactions between specific and general 
transcription factors as well as co-activators (Fig. 3) (Chong et al. 2018; Trojanowski et al. 
2021). Furthermore, it is currently an open question, if the formation of a liquid droplet state 
induced by sufficiently high endogenous cellular protein concentration would indeed amplify 
gene expression or increase transcription activation. 

For chromocenters a number of criteria and corresponding experimental tests to dissect how 
this type of CSC is formed in mouse fibroblasts have been presented (Erdel et al. 2020). The 
results argue against HP1-driven LLPS as a major driver of chromocenter formation in differ-
entiated cells (Fig. 1E). A similar type of analysis appears to be generally warranted to make 
conclusions about LLPS at chromocenters in other organisms (e.g., Drosophila or Arabidopsis) 
or cell types such as embryonic stem cells. Furthermore, HP1 appears to be irrelevant for 
chromocenter structure as corresponding phenotypes are lacking as discussed above (Peters 
et al. 2001; Mateos-Langerak et al. 2007; Aucott et al. 2008; Singh 2010; Mattout et al. 2015; 
Bosch-Presegue et al. 2017; Erdel et al. 2020). These observations lead to the model that HP1 
binds and bridges H3K9me3-modified nucleosomes without inducing chromatin compaction 
(Fig. 1B, C). In mouse cells the latter process is likely to be driven by linker histone H1 that 
mediates the interchromosomal packing of the nucleosome chain (Hansen 2020), and coun-
teracts clustering of chromocenters from different chromosomes (Cao et al. 2013). This clus-
tering could be mediated by DNA methylation-dependent chromatin binding of MeCP2 (Brero 
et al. 2005; Agarwal et al. 2011), which competes with H1 for binding sites (Ghosh et al. 2010). 
In Drosophila, which lacks DNA methylation, chromocenter clustering is dependent on D1 and 
Prod (Jagannathan et al. 2019). The resulting chromocenter conformation in mouse fibroblasts 
would be that of a collapsed chromatin globule induced by H1- and MeCP2-mediated 
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interactions between the nucleosome chain (Fig. 1C) and HP1 binding providing an additional 
safeguard against spurious transcription activation (Erdel et al. 2020).  

 

Conclusions 
The concept of LLPS-driven assembly of chromatin compartments provides a novel and in-
spiring perspective on how the cell organizes genome-associated activities. Such a mecha-
nism could have far-reaching implications and has been associated with a variety of human 
pathologies like Rett syndrome (Fan et al. 2020; Li et al. 2020a; Wang et al. 2020), oncogenic 
RNA splicing (Li et al. 2020b) and various neurodegenerative diseases (Zbinden et al. 2020). 
The latter, together with developmental disorders, could involve deregulated LLPS due to the 
expansion of repeat sequences within TFs (Basu et al. 2020). Another study linked the for-
mation of nuclear droplets to drug targeting and metabolism via the preferential enrichment of 
anti-cancer drugs in CSCs (Klein et al. 2020). However, as discussed here, a number of con-
siderations and findings challenge the general application of the LLPS mechanism to chroma-
tin that need further investigation: (i) The formation of a CSC is clearly different from the as-
sembly of a complex that comprises protein and RNA, such as a cytoplasmic P body, which 
are devoid of chromatin. The binding of proteins and RNA to clustered sites on a mostly im-
mobile chromatin scaffold could be fully sufficient to target genome-associated activities to 
specific loci in the nucleus. Thus, invoking LLPS to rationalize local chromatin enrichment 
might be a solution to a problem that does not exist for chromatin patterning in many instances. 
(ii) CSCs have very heterogeneous properties as illustrated here for three exemplary cases. 
Thus, a “one size fits all” approach does not seem appropriate to rationalize how CSCs are 
formed. Accordingly, a more systematic comparison of different mechanisms and cell types 
against each other is needed that considers the scenarios depicted in Fig. 1. (iii) Informative 
material properties like high-resolution structure, mixing within the CSC versus the exchange 
with the surrounding nucleoplasm, RNA/DNA/protein content and local viscosity need to be 
determined in a consistent and well-defined manner in living cells. In some instances, the cur-
rently available results argue in favor of an LLPS while in others against it. (iv) A general chal-
lenge in the field of chromatin organization is to derive structure-function relationships for a 
given CSC. This is exemplified by the well-established organization of the genome into TADs. 
Despite their ubiquitous presence across organisms, defining the specific functions of TADs 
has proven to be difficult (Beagan and Phillips-Cremins 2020; Cavalheiro et al. 2021). Like-
wise, for LLPS even for artificial systems with ectopic expression of factors, evidence is often 
lacking that the transition from direct and indirect chromatin binding to a phase-separated drop-
let state is associated with functional changes. (v) Perturbation experiments of proteins and 
RNA factors as well as chromatin states are highly informative to reveal underlying organiza-
tion principles and could be integrated with structural features in high-content screening 



 20 

approaches (Berchtold et al. 2018). In combination with appropriate readouts structure-func-
tion relationships can be revealed. Thus, perturbation analyses should be integrated more fre-
quently into studies of phase separation in chromatin. In summary, an integrative approach 
that considers different mechanisms across a variety of CSCs is needed to elucidate the role 
of phase separation as a self-organizing principle of chromatin domains. Towards this goal the 
“infusion” of the field by biophysical experimental methods and quantitative mechanistic mod-
els in the context of phase separation studies creates a unique opportunity to take our under-
standing of chromatin patterning and its functional consequences to the next level. 
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