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KEY PO INT S

• T-bet acts as a tumor
suppressor by
enhancing interferon
signaling and
suppressing
proliferation of
malignant B cells.

• T-bet expression in CLL
cells is positively
correlated with longer
overall survival in
patients with CLL.
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The T-box transcription factor T-bet is known as a master regulator of the T-cell response
but its role in malignant B cells has not been sufficiently explored. Here, we conducted
single-cell resolved multi-omics analyses of malignant B cells from patients with chronic
lymphocytic leukemia (CLL) and studied a CLL mouse model with a genetic knockout of
Tbx21. We found that T-bet acts as a tumor suppressor in malignant B cells by decreasing
their proliferation rate. NF-κB activity, induced by inflammatory signals provided by the
microenvironment, triggered T-bet expression, which affected promoter-proximal and
distal chromatin coaccessibility and controlled a specific gene signature by mainly sup-
pressing transcription. Gene set enrichment analysis identified a positive regulation of
interferon signaling and negative control of proliferation by T-bet. In line, we showed that
T-bet represses cell cycling and is associated with longer overall survival of patients with
CLL. Our study uncovered a novel tumor suppressive role of T-bet in malignant B cells via
its regulation of inflammatory processes and cell cycling, which has implications for the
stratification and therapy of patients with CLL. Linking T-bet activity to inflammation explains the good prognostic
role of genetic alterations in the inflammatory signaling pathways in CLL.
Introduction
The T-box transcription factor (TF) T-bet encoded by TBX21 is
well known for its role in the lineage commitment of CD4+

T helper cells, effector functions of CD8+ T cells, and differ-
entiation of natural killer cells.1-3 But extensive literature
attributes the important role of T-bet in B cells, mainly in the
context of “age-associated” B cells (ABCs).4-6 First described
in aging mice, ABCs also exist in healthy humans, in which
they increase up to the age of 30 years, followed by
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stabilization of their frequency.6-8 Accumulation of ABCs has
been observed during infections in which T-bet+ B cells
contribute to protective immunity.6,9-13 In addition, an
increase in ABC numbers is observed in patients with humoral
autoimmune diseases, such as systemic lupus erythematosus,
scleroderma, rheumatoid arthritis, Crohn disease, and Sjögren
syndrome, as well as in adipose tissue during exacerbated
metabolic disorders. Here, ABCs are linked to the production
of autoreactive antibodies and are associated with worse
clinical outcomes.5,6,8,14-22



The expression of T-bet in B cells is induced via the activation of
several signaling pathways, including toll-like receptor (TLR),
B-cell receptor (BCR), CD40, and cytokine receptor signaling.
These signals are provided by the microenvironment of lymphoid
tissues, for example, by bystander T cells.6,10,23-26 Using Tbx21-
deficient B cells, the involvement of T-bet in immunoglobulin
class switching and the generation of long-lived antibody-
secreting B cells and their function in antiviral control was
observed in several mouse models.9,10,26,27 Yang et al investi-
gated a patient harboring a complete deficiency in T-bet and
observed that T-bet is required for the generation of a CD11chigh

subset of ABC-like B cells, and is dispensable for memory and
plasma cell generation and antiviral control.26 T-bet expression
was also detected in B-cell malignancies, including chronic
lymphocytic leukemia (CLL), a disease of mature B cells with a
highly heterogeneous course.28,29 However, its role and poten-
tial pathological function remain largely unexplored.

Here, we explored the role of T-bet in CLL using single-cell
resolved multi-omics analyses of patient samples and a CLL
mouse model with a Tbx21 knockout. We show that T-bet acts
as a tumor suppressor in CLL by reducing proliferation and is
associated with longer survival of patients.
Methods
Patient samples, mouse models, cell lines, and
published data sets
Patient and healthy, age-matched control samples were
obtained after approval of the study protocols by the local
ethics committees according to the Declaration of Helsinki, and
after obtaining informed consent of patients. Patients met
standard diagnosis criteria for CLL. The details are provided in
supplemental Table 1, available on the Blood website. The Eμ-
TCL1 mouse model was the basis to generate Tbx21–/– TCL1
cells as previously described.30 A list of all cell lines is provided
in supplemental Table 2, and an overview of the published data
sets used in this study is provided in supplemental Table 3.

A detailed description of all methods is provided in the
supplemental Methods.
Results
CLL cells have enhanced TBX21 expression
We first compared TBX21 expression levels in CLL cells and
untransformed B cells of age-matched healthy controls, which
revealed higher T-bet transcript and protein levels in CLL cells
(Figure 1A-B). This was also the case when comparing CLL cells
with several developmental states of untransformed B cells,
including mature CD5+ and memory B cells, which have
been suggested as the cellular origin of CLL (Figure 1C;
supplemental Figure 1A),31,32 suggesting that high TBX21
expression in CLL cells is disease-specific.

We next explored potential similarities between CLL cells and
ABCs by analyzing typical ABC marker genes,13,26,34 revealing a
particularly high expression of TBX21, ITGAX (CD11c), and
FCRL5, accompanied by low expression levels of MS4A1
(CD20) (Figure 1D) in CLL cells, suggesting a phenotypical
overlap with ABCs.
T-bet IN CLL
We further compared TBX21 expression in genetically defined,
prognostic subgroups of patients with CLL and did not observe
major differences in cases with or without deletion of chromo-
some 13q (del13q) or somatic hypermutations of the IGHV gene
locus, 2 commonly assessed prognostic features in CLL
(Figure 1E). In contrast, patients with trisomy 12, associated with
an intermediate prognosis,35 showed a significantly higher
expression of TBX21, whereas in patients with ATM mutation, a
driver of more aggressive disease,36 TBX21 expression was
significantly lower than in cases without these aberrations.

To infer whether the expression of TBX21 is epigenetically
imprinted in CLL cells, we compared chromatin accessibility by
assay for transposase-accessible chromatin (ATAC)-seq and
H3K27-acetylation (H3K27ac) of the TBX21 gene locus in CLL vs
healthy control B cells.37 This demonstrated that CLL cells not
only show a higher transcriptional activity in TBX21 but also
higher signs of epigenetic activation and chromatin accessibility
in comparison to B cells or B-cell subsets from healthy controls
(Figure 1F; supplemental Figure 1B-C).
Inflammatory signals drive TBX21 expression in
CLL cells via NF-κB activity
To explore the signals that induce TBX21 expression in CLL
cells, we used data of CLL long-term cultures, including so-
called nurse-like cells and T cells,38 as well as cocultures of
CLL cells with in vitro–activated T cells.39,40 In both cultures,
TBX21 expression was induced in the CLL cells (Figure 2A;
supplemental Figure 2A). Through in vitro stimulation of CLL
cells, we identified interferon gamma (IFN-γ), IFN-β, and CpG
oligos as TLR9 ligands as TBX21-inducing signals, as well as
combinations of these stimuli with BCR activation by αIgM
(Figure 2B-C; supplemental Figure 2B-C). These data suggest
that the inflammatory milieu in CLL is responsible for enhanced
TBX21 expression in malignant B cells.41,42

A common feature of IFN-, TLR-, and BCR-signaling is the
subsequent activation of NF-κB. Therefore, we hypothesized
that TBX21 expression in CLL is induced by NF-κB.43-45 In line,
gene expression of TBX21 was reduced in patients with CLL
during treatment with the Bruton tyrosine kinase (BTK) inhibitors
ibrutinib46,47 and acalabrutinib,48 which among other signaling
pathways are known to disrupt NF-κB activity46,49 (Figure 2D-E;
supplemental Figure 2D). Furthermore, ibrutinib-mediated
reduction in NF-κB signaling prevented inflammation-
associated induction of T-bet in vitro (Figure 2F; supplemental
Figure 2E). In contrast, neither a 7-day treatment of patients
with CLL with the spleen tyrosine kinase inhibitor entospletinib
(supplemental Figure 2F) affecting downstream protein kinase B
(AKT) signaling50-52 nor a 48-hour treatment of CLL cells in vitro
with the Src inhibitor dasatinib altered the expression of TBX21
(supplemental Figure 2G).53

Next, we measured NF-κB p65 phosphorylation after stimula-
tion with microenvironmental factors to experimentally validate
the dependency of TBX21 expression on NF-κB activity in CLL.
As expected, CpG stimulation and the combination of αIgM
and IFNγ showed increased total amounts of p65, and higher
levels of p65 phosphorylation (supplemental Figure 2H-I).
Inhibition of NF-κB signaling by IKK-16 reduced basal T-bet
expression and prevented the induction of T-bet in response to
1 AUGUST 2024 | VOLUME 144, NUMBER 5 511
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NF-κB–dependent microenvironmental signals in CLL cells
(Figure 2G). In line, Nfkbie–/– TCL1 leukemic cells, which are
derived from the Eμ-TCL1 mouse model of CLL and harbor
hyperactive NF-κB signaling,54 showed higher expression of T-
bet than wild-type (WT) control cells (Figure 2H), confirming the
importance of NF-κB in the induction of TBX21 expression.
T-bet activity can be assessed by its target gene
expression signature
The regulatory activity of T-bet on transcriptional programs in T
cells is well described;55 however, the transcriptional targets of
T-bet in B cells are vastly unknown. Using the CRISPR/Cas9
approach, we generated Tbx21–/– TCL1 cells (supplemental
Figure 3A),30 analyzed them by RNA sequencing (RNA-seq)
and mass spectrometry (MS) in comparison to WT control cells,
and identified differentially expressed genes (DEGs) and pro-
teins (supplemental Tables 4-5), respectively. We further strati-
fied the RNA-seq data of sorted CLL cells from patients
according to their highest and lowest quartiles of TBX21
expression and analyzed DEGs in TBX21low vs TBX21high cells
(supplemental Table 6).33 We then identified the overlap of all
DEGs and proteins in these data sets with proteins obtained
from the MS data of patients with CLL that correlated with T-bet
levels (supplemental Table 7).56 This integrated multi-omics
analysis generated a list of 104 genes that displayed a posi-
tive (55 genes) or negative (49 genes) correlation with TBX21
expression (supplemental Figure 3B-C; supplemental Table 8).
Using this gene list, we explored whether T-bet activity was
epigenetically imprinted in CLL by stratifying patients with CLL
according to their H3K27ac levels at the TBX21 promoter,
which correlated well with TBX21 gene expression
(supplemental Figure 3D). We observed a clear correlation
between differential gene expression and H3K27ac of T-bet–
dependent genes in TBX21low vs TBX21high CLL cases, sug-
gesting epigenetic imprinting of T-bet activity in CLL
(supplemental Figure 3E). In addition, we independently vali-
dated our signature of T-bet–dependent genes in a published
CLL data set, which confirmed that both the inducing and the
repressing T-bet activity was higher in TBX21high CLL
(supplemental Figure 3F).57

We next aimed to infer whether T-bet activity is specific to CLL
cells or mirrored in B-cell subsets of healthy donors by
comparing the expression of T-bet–dependent genes using
published transcriptome data.31 Intriguingly, T-bet–dependent
genes separated CLL samples from all other B-cell subsets;
mature CD5+ B cells were most similar to CLL cells (Figure 3A).
Figure 1. TBX21 expression is higher in CLL cells than in B cells of healthy donors. (A)
controls (HC B cells; n = 11). P values were obtained by the unpaired t test. (B) Flow cyt
healthy controls (n = 5). P values were obtained by the unpaired t test. (C) Gene expres
limits indicate mean expression and error bars indicate standard error of the mean. P va
discovery rate (FDR) using the Benjamini-Hochberg (BH) method. (D) Expression of ABC
(green) and low (blue) expressions in the ABCs are depicted on the right. (E) Analysis of
genetic alterations. Point estimates with 95% confidence intervals were calculated for the
using the BH method. The point estimates represent the difference between the mea
alteration. The point estimates were color-coded based on FDR. The OncoPrint shows th
along with additional clinical information such as IGHV status, time to first treatment, and
gene expression. Monoclonal B lymphocytosis cases are excluded from this analysis. G
alteration type. The number of samples with mutations, as well as the percentage of mu
consisted of gene expression microarray data from 364 CLL samples.33 (F) Chromatin l
precipitation sequencing and positive-strand RNA-seq levels from 7 patients with CLL
germinal center, memory B cells, and plasma cells). *P ≤ .05; **P < .01; ***P < .001; ****

T-bet IN CLL
We further calculated the T-bet activity scores for induced and
repressed genes separately. Although no major differences in
the inducing activity of T-bet were observed (Figure 3B), the
repressive activity of T-bet was the highest in CLL, followed by
mature CD5+ B cells (Figure 3C). The correlation between T-bet
activity scores and TBX21 gene expression revealed a strong
correlation of repressive activity (Figure 3D), suggesting that
T-bet acts as a silencing rather than activating TF in CLL. A
single-cell omics study recently defined an atlas of B cells in the
tonsils,58 including a cell subset annotated as FCRL4+/FCRL5+

memory B cells that showed similarities to ABCs.13,34,59,60 We
hypothesized that this B-cell subset is controlled by TBX21 and
investigated the T-bet activity scores across all B-cell subsets of
the tonsil atlas. Notably, TBX21 expression was highest in
FCRL4+/FCRL5+ memory B cells (Figure 3E; supplemental
Figure 4A), which was accompanied by the highest T-bet
activity according to the CLL–defined target gene signature
(Figure 3F). To confirm the robustness of this gene signature,
we independently calculated T-bet activity in these data using
the recently published pySCENIC tool.61 This confirmed the
highest T-bet activity in FCRL4+/FCRL5+ memory B cells
(supplemental Figure 4B) and showed that the correlation
between activity scores and TBX21 gene expression was similar
in both approaches (supplemental Figure 4C-D). Notably, the
CLL-defined T-bet activity was mainly driven by a gene module
containing NOTCH1, IRF9, and RUNX3 in FCRL4+/FCRL5+

memory B cells (supplemental Figure 4E). Even though most T-
bet–repressed genes in CLL also showed low expression in
FCRL4+/FCRL5+ memory B cells, an exceptionally high
expression of BHLHE41 was observed in this subset, high-
lighting the distinct regulatory activities of T-bet in malignant vs
untransformed B cells.

In summary, we defined a T-bet–dependent gene expression
signature in CLL cells that allowed us to robustly assess T-bet
activity in CLL cells.

T-bet regulates transcription via suppression of
long-range chromatin interactions
To dissect the mechanisms of transcription regulation by T-bet,
we generated single-cell ATAC-seq (scATAC-seq) data for
Tbx21+/+ vs Tbx21–/– TCL1 cells using our TurboATAC proto-
col.62 This protocol provides very high Transposase Tn5 inte-
gration efficacy and yielded a mean of ~58 000 fragments per
cell for a high coverage of regulatory elements. We analyzed the
genomic location of accessible T-bet binding motifs associated
with the T-bet–dependent gene set (supplemental Figures 3C
Gene expression of TBX21 in CLL cells (n = 41) and B cells from age-matched healthy
ometric analysis of T-bet levels in CLL cells (n = 20) and B cells from age-matched
sion of TBX21 in untransformed B-cell subsets (n = 5-7) and CLL cells (n = 10). Bar
lues were obtained by the 1-way analysis of variance (ANOVA), controlling the false
marker genes in CLL cells (n = 10) and untransformed B-cell subsets (n = 5-7). High
the association between TBX21 gene expression and the presence of specific driver
whole CLL cohort and IGHV subtypes using 2-sided t tests and controlling the FDR
n TBX21 expression in individuals with CLL with and without each corresponding
e association of genetic driver alterations with higher or lower expression of TBX21,
patient status (treated/untreated). Samples are ordered from lower to higher TBX21
enetic driver alterations are depicted using distinct colors corresponding to the
tated samples over the whole cohort, is shown on the right. The analyzed data set
andscape of TBX21 showing the median ATAC-seq, H3K27ac chromatin immuno-
and 15 samples from 4 different B-cell subpopulations of healthy controls (naïve,
P < .0001.
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analyzed by flow cytometry (n = 3 technical replicates). ns, not significant. *P ≤ .05; **P < .01; ***P < .001; ****P < .0001.
and 5A-D). We identified T-bet binding motifs in 23% of all peaks
from the pseudobulk scATAC-seq data, which were subse-
quently referred to as T-bet peaks. Using RWIRE software, we
detected simultaneously accessible peaks in single cells between
514 1 AUGUST 2024 | VOLUME 144, NUMBER 5
T-bet-dependent genes and T-bet peaks.63,64 Approximately
26% of T-bet-dependent genes contained an ATAC peak with a
T-bet binding motif at their promoter (Figure 4A). These T-bet
promoter peaks showed a higher number of coaccessible links to
ROESSNER et al
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Figure 3. T-bet has lineage-separating properties in CLL. (A) Expression of T-bet–dependent genes in untransformed B-cell subsets (n = 5-7) and CLL cells (n = 10). (B-C)
Activity scores of T-bet were calculated based on (B) induced and (C) repressed genes individually for untransformed B-cell subsets and CLL cells. P values were obtained by 1-
way ANOVA and controlling the FDR using the BH method. (D) Correlation between TBX21 gene expression and T-bet activity. P values were obtained using Pearson
correlation testing. (E-F) Analysis of B-cell subsets in the human tonsil atlas with a representation of T-bet expression in different clusters. (F) T-bet activity scores in human
tonsillar B cells calculated based on induced genes by T-bet in the CLL cells. P values were obtained using the Mann-Whitney test. **P < .01; ****P < .0001.
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distal peaks in Tbx21–/– vs Tbx21+/+ TCL1 cells (Figure 4B). In
contrast, there was no difference in the number of coaccessible
links from T-bet–dependent gene promoters without T-bet
peak between Tbx21–/– vs Tbx21+/+ TCL1 cells. We concluded
that promoter-bound T-bet represses regulatory interactions with
distal genomic loci in Tbx21+/+ TCL1 cells. In addition, we were
able to link ~60% of T-bet–dependent genes without a T-bet
promoter peak to distal T-bet peaks by coaccessibility analysis of
Tbx21–/– and Tbx21+/+ TCL1 cells (Figure 4A). The number of
coaccessible links between T-bet-dependent genes and distal T-
bet peaks increased in Tbx21–/– (n = 170) vs Tbx21+/+ TCL1 cells
(n = 151; Figure 4C). Approximately 15% of the coaccessible
links were detected in both Tbx21–/– and Tbx21+/+ TCL1 cells;
however, most were unique to either Tbx21–/– or Tbx21+/+ TCL1
cells. These findings point to a rewiring of distal gene regulation
in T-bet–dependent genes in Tbx21–/– TCL1 cells. For 15% of the
T-bet–dependent genes, no regulatory link to accessible T-bet
binding motifs was detected (Figure 4A), which could reflect
genes regulated indirectly by T-bet. An example of transcription
regulation by T-bet, which involves long-range interactions, is
given for Nos1, which is negatively regulated by T-bet
(Figure 4D-E, bulk RNA-seq). Different T-bet–dependent regu-
latory mechanisms appear to be active when comparing 1 kb
regions around the 3 transcriptional start sites (TSSs) of Nos1,
indicated as TSS1, TSS2, and TSS3 in Figure 4E, TSS1 is inac-
cessible in Tbx21–/– and Tbx21+/+ TCL1 cells and does not
contain a T-bet binding motif. TSS2 is moderately accessible in
Tbx21–/– and Tbx21+/+ TCL1 cells but does not contain a T-bet
binding motif. It shows increased accessibility in Tbx21+/+ TCL1
cells with additional and enhanced coaccessible links from the
promoter to the surrounding T-bet peaks. Thus, the lack of a T-
bet binding motif at TSS2 is compensated for by putative
repressive interactions with distal regulatory T-bet peaks in
Tbx21+/+ TCL1 cells. TSS3 is highly accessible in both Tbx21–/–

and Tbx21+/+ TCL1 cells and contains a T-bet motif. A
coaccessible link to the downstream peak was found only in
Tbx21–/– TCL1 cells. We concluded that the loss of repressive T-
bet binding at TSS3 in Tbx21–/– TCL1 cells facilitates the for-
mation of a regulatory link to a downstream peak.

In summary, T-bet controls the expression of most T-bet–
dependent genes by binding to cis-regulatory elements and
modulating long-range interactions that enhance the transcrip-
tion of target genes, as inferred from coaccessibility analysis.

T-bet enhances IFN and represses cell cycle
signatures in CLL
Next, we elucidated the function of TBX21 in CLL cells with a
gene set enrichment analysis (GSEA) of published tran-
scriptome data of human CLL cells and our RNA-seq data of
Tbx21–/– vs Tbx21+/+ TCL1 cells. DEG sets (false discovery rate
<0.05) were computed to identify TBX21-regulated pathways
that are conserved across species. In total, 327 gene sets were
differentially enriched in human and mouse, with 298 gene sets
downregulated and 11 upregulated in TBX21low/KO cells
(Figure 5A; supplemental Figure 6A). Interestingly, TBX21low/KO

cells showed a lower abundance of IFN-associated pathways and
an enrichment of the cell cycle signature (Figure 5A;
supplemental Figure 6B). Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analysis using T-bet–correlated genes
and proteins derived from published data in CLL56 revealed that
516 1 AUGUST 2024 | VOLUME 144, NUMBER 5
T-bethigh CLL samples were enriched in B-cell, NF-κB, TLR, and
TH17 pathways. In line with the GSEA results, the TBX21low/KO

samples were enriched in cell cycle pathways (Figure 5B). To
confirm the positive regulation of IFN pathway activity by T-bet,
we compared the expression of IFN-stimulated genes (ISGs) in
Tbx21–/– and Tbx21+/+ TCL1 cells. At steady state, we noted a
higher expression of many ISGs in Tbx21+/+ than in Tbx21–/–

TCL1 cells in our RNA-seq data (Figure 5C). Stimulation of these
cells with IFNβ in vitro resulted in stronger induction of ISGs in
Tbx21+/+ than in Tbx21–/– cells (Figure 5D), confirming the pos-
itive regulation of IFN signaling in CLL by T-bet.

We further characterized the effects of T-bet on chromatin
accessibility and T-bet-controlled TFs using our scATAC-seq of
Tbx21–/– vs Tbx21+/+ TCL1 cells and ATAC-seq data from
TBX21low vs TBX21high patients with CLL. This showed that
TBX21low/KO cells harbored a higher accessibility of multiple
chromatin sites (+500% in TCL1 CLL and +200% in human CLL
cells; Figure 6A-B). Motif enrichment analyses inferred differ-
ential TF activities in Tbx21–/– vs Tbx21+/+ TCL1 cells
(supplemental Figure 7A) and TBX21low vs TBX21high CLL cells
from patients with IGHV-unmutated CLL and mutated CLL
(supplemental Figure 7B). This analysis confirmed the most
repressive transcriptional activity of T-bet in CLL. Overlap of
differential binding motif enrichment of TCL1, unmutated-CLL,
and mutated-CLL cells (supplemental Figure 7C-D) identified an
enrichment of 3 and a depletion of 9 binding motifs in
TBX21high compared with TBX21low cells (Figure 6C;
supplemental Figure 7D). Interferon regulatory factor (IRF), IRF
and basic leucine zipper ATF-like transcription factor (BATF)
coregulation and type-1 IFN-sensitive response element
(T1ISRE) motifs were enriched in TBX21high cells (Figure 6C),
which is in line with our results above showing that T-bet
induces IFN signaling. In contrast, the motifs of NF-κB p50,
brother of the regulator of imprinted sites (BORIS), CCCTC-
binding factor (CTCF), B-cell TF E2A, and members of the Pit-
Oct-Unc (POU) TF family were enriched in TBX21low cells. These
TFs were shown to prevent spontaneous apoptosis in CLL65 and
enhance the proliferation of B cells,66 which is in line with the
negative correlation of T-bet with the cell cycle observed by
GSEA and KEGG analysis (Figure 5A-B).

In summary, our data showed that T-bet maintains an inflam-
matory program, particularly type 1 IFN signaling, and
represses cell cycle signatures in CLL cells.
T-bet suppresses cell proliferation
To validate the observed association between T-bet and cell
cycle activity, we performed single-cell RNA sequencing
(scRNA-seq) of Tbx21–/– vs Tbx21+/+ TCL1 cells. First, we
detected a higher fraction of Tbx21–/– cells in the G2/M or S
phase than Tbx21+/+ cells (Figure 7A; supplemental Figure 8).
Second, by analyzing KI-67 expression in TCL1 cells isolated
from the peritoneal cavity, bone marrow, and spleen of
leukemic mice, we observed a higher frequency of KI-67+ cells
in Tbx21–/– compared with control mice (supplemental
Figure 9A). Third, phosphoproteomic analysis of Tbx21–/– vs
Tbx21+/+ TCL1 cells revealed an overrepresentation of AKT and
protein kinase C networks, as well as an enrichment of
the CMGC kinase group (including cyclin-dependent kinases
(CDK), mitogen-activated protein kinases (MAPK), glycogen
ROESSNER et al
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synthase kinases, and CDK-like kinases) in Tbx21–/– cells
(Figure 7B; supplemental Figure 9B-C). The latter included
important mediators of cell cycle progression, such as CDK1,
CDK2, and CDK5, which showed higher activity in the absence
of T-bet. In support of this, 13 of the total 104 T-bet–dependent
genes, all of which were repressed by T-bet, were associated
with cell cycling (supplemental Figure 3C), including Bub1,
which is involved in G1/S phase entry and cell cycle
progression.67
Figure 4 (continued) and Tbx21+/+ TCL1 cells (n = 5) from bulk RNA-seq data. (E) Coac
region. Browser tracks and coaccessible links from the biological replicates were merged.
2 kb regions around peaks from pseudobulk chromatin accessibility with no accessibilit
significantly higher accessibility in Tbx21–/– TCL1 cells (blue); T-bet binding motif position
promoters and distal peaks in Tbx21–/– and Tbx21+/+ TCL1 cells. Promoters of Nos1 (1 k

518 1 AUGUST 2024 | VOLUME 144, NUMBER 5
Next, we investigated published scRNA-seq data of CLL lymph
nodes, in which CLL cells have been annotated to be
either quiescent, activated, or proliferating.68 Using our list of
T-bet–dependent genes, we observed the lowest repressive T-bet
activity in proliferating CLL cells (Figure 7C; supplemental
Figure 9D), which is in line with the proposed repressive activity
of T-bet for cell cycle activity. Analysis of published data from cells
of patients with monoclonal B lymphocytosis, a precursor state of
CLL with a yearly progression rate of 1% to 2% of cases,69 revealed
cessibility in Tbx21–/– and Tbx21+/+ TCL1 cells at the T-bet-dependent gene Nos1
Top: browser tracks of pseudobulk chromatin accessibility from single cells. Middle:
y change (gray), significantly higher accessibility in Tbx21+/+ TCL1 cells (black), and
s and gene annotation in black. Bottom: coaccessible links between peaks at Nos1
b around the TSS1-3) are marked in red.
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no differences in T-bet activity before and after progression to CLL
(supplemental Figure 10A), suggesting no major differences in cell
cycle activity at the stage of disease progression.70

Finally, to experimentally validate the regulation of the cell
cycle by T-bet, we generated a CLL-like MEC-1 cell line and 2
B-cell lymphoma cell lines, OCI-Ly7, and U-2940, with inducible
T-bet expression. Overexpression of T-bet upon doxycycline
treatment (supplemental Figure 10B-C) resulted in lower
expansion and proliferation rates in comparison to either green
fluorescent protein–transduced or nontreated control cells
(Figure 7D; supplemental Figure 10 D-E). Thus, T-bet plays a
central role in suppressing the proliferation of malignant B cells.

In summary, the omics data analyses of TCL1 and human CLL
cells, followed by functional assays showed that T-bet activity
inhibits malignant B-cell proliferation.

T-bet expression is a marker of good prognosis for
CLL
A subset of patients with CLL suffer from disease transformation
into the more aggressive Richter syndrome (RS), which often
resembles diffuse large B-cell lymphoma (DLBCL) and is associ-
ated with a poor outcome with a short overall survival (OS) of less
than a year. Recently, a novel mouse model mimicking the
transformation of CLL cells into RS cells was published.71 Using
this model, we observed higher expression of Tbx21 in CLL vs RS
cells (supplemental Figure 11A). In addition, analysis of scRNA-
seq data of paired CLL cells and transformed RS cells of 4
patients revealed the lowest repressive T-bet activity in a distinct
cluster of proliferating RS cells (supplemental Figure 11B).72

Accordingly, comparing patient samples of CLL and other B-
cell non-Hodgkin lymphoma entities revealed the highest
repressive T-bet activity in CLL and the lowest in DLBCL
(supplemental Figure 11C), which is in line with our observation
that T-bet activity limits the proliferation of malignant B cells.

We then assessed the prognostic impact of T-bet in CLL and
stratified patients according to their T-bet expression levels
acquired by RNA-seq or MS in high- and low-expressing groups.
Patients with CLL with high gene expression and protein levels of
T-bet showed better outcomes, specifically longer time to
treatment and OS, compared with cases with low expression
levels (Figure 7E; supplemental Figure 12A-D).33,56,57 The longer
treatment-free and OS of patients with CLL with high T-bet
expression was independent of their IGHV mutational status or
ZAP70 gene expression, which was confirmed by multivariate
analysis (Figure 7F-G; supplemental Figure 13A-D).

Altogether, our data identified T-bet as a novel prognostic
marker for CLL. Mechanistically, this can be explained by T-bet
driving inflammatory processes via IFN signaling and limiting
the proliferation of malignant B cells. These novel findings have
implications for the stratification and therapy of patients with
CLL and likely other B-cell non-Hodgkin lymphoma.

Discussion
Our study provides evidence for a so far unexplored role of T-
bet in CLL and provides insights into its transcriptional
1 AUGUST 2024 | VOLUME 144, NUMBER 5 519
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regulation and activity, as well as its prognostic role. We
showed higher T-bet expression in CLL cells than in B cells from
healthy donors, and its induction by multiple factors within the
tumor microenvironment via NF-κB and likely other pathways.
We observed that T-bet acts mostly as a transcription repressor
and that its activity maintains IFN signaling and represses the
cycling of CLL cells. Therefore, targeting T-bet or its associated
pathways might serve as a novel treatment strategy for CLL.

Because T-bet expression is a feature of most ABCs,5 we
compared the phenotypic and functional properties of CLL cells
520 1 AUGUST 2024 | VOLUME 144, NUMBER 5
and ABCs to assess whether CLL cells might originate from this B-
cell subset. Similarly, as in ABCs, T-bet expression is induced in
CLL cells by inflammatory signals present in the micromilieu of
CLL through BCR, TLR, and IFN stimulation.6,24,73 In addition, we
detected the expression of several ABC marker genes in CLL but
not in nonmalignant B cells. CLL cells are suggested to be
derived from self-reactive B-cell precursors; however, they do not
secrete autoantibodies, which is a typical feature of ABC.6,74,75

Furthermore, although T-bet expression in ABCs is regulated by
STAT signaling, we identified NF-κB as a key mediator of T-bet
expression in CLL cells.24 Thus, the regulatory properties of T-bet
ROESSNER et al



induction in malignant and nonmalignant B cells are likely distinct.
To ultimately assess whether CLL cells originate from ABCs,
further cell-of-origin modeling comparing different subsets of
CD11c+ untransformed B cells and CLL cells will be necessary.

Our in vitro and in vivo data showed that BTK inhibitors reduced
T-bet expression in CLL cells, which is in line with the negative
effect of these drugs on NF-κB activity.46,49 However, the
overall clinical efficacy of BTK inhibition is clearly independent
of the altered expression or activity of T-bet.

Type I IFN in the tumor microenvironment is known to suppress
tumor growth, but in CLL, the response to IFN differs between the
good and bad prognostic subgroups. In low-risk patients, IFN
signaling is associated with growth arrest, whereas in aggressive
CLL, IFN promotes tumor growth.76 This might be explained by
recent findings suggesting that aggressive forms of CLL are
hypersensitive to autocrine IFN signaling.77 In light of our findings
that T-bet induces IFN signaling and limits proliferation, this
implies that the chronic inflammatory micromilieu that is mediated
by T-bet activity in CLL, is a characteristic of indolent disease with
a low proliferative rate, in contrast to low T-bet activity in
aggressive lymphomas such as RS. Notably, clinical IFNα treat-
ment showed overall limited efficacy, but the best responses were
noted in a subset of previously untreated, early-stage CLL,78 which
possibly could resemble patients with CLL with high T-bet activity.

Our bulk ATAC-seq analysis of a large cohort of patients with CLL
combined with scATAC-seq analysis of the CLL mouse model
revealed a remarkable reduction in chromatin accessibility and
subsequent gene expression by T-bet. This repressive activity of T-
bet is in line with published data showing that T-bet represses
specific gene programs in B cells.27 Our findings show that T-bet
has multiple modes of action to regulate target gene expression,
including direct promoter binding, and also controls the regula-
tory long-range interactions of enhancers. Our finding that T-bet
deficiency is associated with an enrichment of binding sites for the
POU TF family is in contrast with observations in human CD21low

ABC-like B cells that express T-bet and are enriched for POU-
binding sites in open chromatin regions,8 highlighting the differ-
ence between ABCs and CLL cells. Members of the POU TF family
are required for the progression of the cell cycle.66,79 In accor-
dance, the enhanced activity of POU TFs in TBX21low/KO CLL cells
was associated with a higher expression of cell cycle-associated
gene signatures and higher cell proliferation rates. This is in line
with, and might explain, the reduced OS of patients with CLL with
lower T-bet expression. Moreover, Penter et al noted a reduced
activity of POU TF family members in patients with CLL in com-
parison to the more aggressive RS,80 which is consistent with our
finding of reduced T-bet activity in RS and in more aggressive
types of lymphoma such as DLBCL.

In summary, we showed that T-bet is induced in CLL cells by
microenvironmental signals present in lymphoid tissues via NF-κB
signaling. It acts as a tumor suppressor by maintaining IFN
signaling and repressing the cell cycle. As a consequence, T-bet
expression levels are positively correlated with longer survival
of patients with CLL, which has implications for clinical
applications.

Toward this goal, specific immune stimulatory agents that lead
to the induction of T-bet in CLL cells need to be evaluated in
preclinical models. Notably, such compounds likely also have a
T-bet IN CLL
positive impact on other immune cells, thereby improving
cancer-directed immune responses, which could result in an
additive multitarget therapeutic efficacy.
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Bulk gene expression data were deposited in the ArrayExpress reposi-
tory of the European Bioinformatics Institute (https://www.ebi.ac.uk/
biostudies/arrayexpress/studies; accession number E-MTAB-13030).
The scRNA-seq and scATAC-seq data are available from the Gene
Expression Omnibus (GEO) repository (https://www.ncbi.nlm.nih.gov/
geo/) under (accession number GSE234226). Previously published
sequencing data that were used in the analysis are listed in
supplemental Table 3. GEO data (accession number GSE22529,81

GSE36907,31 and GSE5057239) were analyzed and derived from R2:
Genomics Analysis and Visualization Platform (http://r2.amc.nl). Gene
expression of Tbx21 in a mouse model of matched CLL and Richter
syndrome (GSE186137) was analyzed after the transfer of cells in wild-
type animals.71 Custom code used is available from GitHub at https://
github.com/RippeLab/RWire-IFN, https://github.com/tnaake/TBET_in_
CLL, and https://github.com/massonix/Tbet_in_CLL.
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