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Abstract 

The analysis of chromatin features in single cells centers around Tn5 transposase and 

exploits its activity to simultaneously fragment target DNA and integrate adapter 

sequences of choice. This reaction provides a direct readout in the assay for 

transposase-accessible chromatin in single cells (scATAC-seq) to map open chromatin 

regions. However, a current limitation is the sparse coverage of open chromatin loci 

that are detected in a given single cell by droplet-based methods. Thus, enhancing Tn5 

activity to improve genomic coverage of scATAC-seq or facilitating multi-omics 

readouts of chromatin features via Tn5 together with the transcriptome is of great 

interest. Here, we address these issues by optimizing scATAC-seq for an increased 

number of integrations per cell. In addition, we provide a protocol that combines 

mapping of histone modification with scRNA-seq from the same cell by targeting Tn5 

to antibody-bound chromatin epitopes. Our experimental workflows improve the 

results obtained from the downstream data analysis and serve to better resolve 

epigenetic heterogeneity and transcription regulation in single cells. 

 

Introduction 

For the analysis of chromatin features in single cells, Tn5 transposase is a crucial enzyme as 

it can simultaneously fragment target DNA across the genome and integrate adapter 

sequences of choice (Adey, 2021). This “cut-and-paste” reaction is referred to as tagmentation 

and has been initially used for preparation of DNA sequencing library. Usage of hyperactive 

Tn5 enzymes (Picelli et al., 2014) makes tagmentation an efficient process that can be 

conducted in situ, which is a prerequisite for its application in single cell sequencing (sc-seq). 

The direct application of tagmentation to analyze chromatin is the assay for transposase-

accessible chromatin in single cells (scATAC-seq) (Buenrostro et al., 2015;Klemm et al., 

2019). It maps enhancers and promoters that are in an open and bona fide active state and 

thus provides valuable information on transcription regulation mechanism and cellular 

heterogeneity with respect to cis-regulatory elements (Jiang et al., 2023). Furthermore, Tn5 is 

used in sc-seq multiomics readouts that yield, for example, scATAC-seq and scRNA-seq data 

from the same cell, albeit frequently with a lower sensitivity as compared to applying the two 

readouts in separate experiments (Dimitriu et al., 2022).  Other types of single cell multiome 

analysis (e.g., RNA with CUT&Tag-seq of histone modifications) require specific modifications 

of the Tn5 mediated tagmentation reaction like using specific adapters loaded on a Protein A-

tagged Tn5 in a so-called cut-and-tag reaction (Lahnemann et al., 2020;Lee et al., 2020). For 

all these applications, improvements to the Tn5 tagmentation reaction would advance the 
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single cell analysis, which is frequently limited by data sparsity. For example, a typical 

coverage in scATAC-seq experiments with the Chromium drop-seq platform from 10x 

Genomics is 7,000 accessible sites per cell out of >100,000 sites that are detected by (pseudo-

)bulk ATAC-seq (Li et al., 2021). Thus, the number of open loci detected in a given cell is 

rather sparse, which limits the resolution of cellular heterogeneity based on the ATAC signal. 

Aggregation of similar cells is one approach to address this issue (Pliner et al., 2018) but this 

leads to the loss of information on stochastic differences of chromatin accessibility between 

individual cells. Likewise, there is also a need to improve the sensitivity for the chromatin 

readout in multiomics experiments that map the transcriptome in the same cell together with 

ATAC or another chromatin feature via CUT&Tag (C&T) approaches. 

Here, we optimized Tn5 activity to increase the sensitivity of scATAC-seq and described how 

its adapter loading can be made compatible with existing scATAC and multiome workflows for 

which the adapter configuration is unknown. We demonstrate that our protocols improve data 

quality and reduce sparsity without affecting scRNA-seq data quality for a more versatile 

multiome analysis.  

 

Results 

We developed optimized experimental workflows that use differently loaded Tn5 preparations 

to improve Tn5-based analyses of single cells (Fig. 1A). Our work comprised three different 

reaction types: (i) In a protocol termed scTurboATAC we optimized the detection of open 

chromatin in scATAC-seq experiments over the standard protocol used with the Chromium 

platform from 10x Genomics. (ii) For the multiome protocol that combines scRNA-seq and 

scATAC-seq from the same cell (scMultiome-ATAC) we provide a protocol that uses 

phosphorylated adapters. (iii) The application for scC&T-seq together with scRNA-seq 

(scMultiome-C&T) involves Tn5 tagged with Protein A to target the enzyme in situ to the 

chromatin bound antibody. For this type of sc-seq analysis, we described a multiome analysis 

where histone H3 lysine 27 trimethylation is mapped alongside gene expression. Subsequent 

to the Tn5 reaction, the downstream processing followed standard protocols that resulted in 

efficient library preparation for the three applications described here (Fig. 1B). 

 

scTurboATAC increases the number of open sites detected 

By varying experimental parameters, we found that the activity of Tn5 is a limiting factor for 

scATAC-seq. We tested the activity of different concentrations of an in-house Tn5 preparation 

(Tn5-H) loaded with the adapters listed in Table 1. Its activity was compared in a qPCR assay 
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to Tn5 enzymes from 10x Genomics (Tn5-TXG) as well as the Illumina TDE1 enzyme (Tn5-

ILMN) by qPCR (Fig. S1).  

   

   

Fig. 1 Experimental workflow. (A) Experimental procedure and use of the differently loaded Tn5 
preparations. For scATAC and the multiome workflow nuclei were prepared and incubated with Tn5. 
Importantly, adapters varied between the protocols. For scMultiome-ATAC we used phosphorylated 
adapters, while the Tn5 for scMultiome-C&T was tagged with Protein A to facilitate binding to the 
antibody against a given chromatin feature. Following the Tn5 reaction, the downstream processing 
follows standard protocols. (B) Exemplary tapestation profiles are displayed for either the scATAC-seq 
or scC&T-seq libraries and corresponding cDNA fragments for the multiome protocols. MEFs and TF1 
cells were directly used from cell culture while PBMCs were obtained from viably frozen aliquots. All 
profiles shown were generated with the Tn5-H100 enzyme preparation. 

The highest concentration of in-house Tn5 (Tn5-H100) that we used showed a four-fold higher 

activity per volume in terms of product yield as compared to the Tn5 enzyme provided in the 
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10x Genomics scATAC-seq version 2 (v2) kits (Tn5-TXGv2) and an about 1.3-fold higher 

activity per volume than Tn5-TXGv1.1 (Fig. S1A). We also tested different buffer compositions 

and found that the buffer provided in the 10x Genomics kit performed best. The Tn5-ILMN 

enzyme activity was comparable to Tn5-TXGv1.1 (Fig. S1A, B). 

We then compared our Tn5-H100 and Tn5-H30 preparations to the Tn5-TXGv1.1 enzyme 

using mouse embryonic fibroblasts (MEFs) treated with interferon β (IFNβ) for 6 hours. We 

found that Tn5-H100 yielded the best results with respect to different QC parameters (Fig. 2A, 

Fig. S2A): Recovered cell barcodes showed (i) higher TSS enrichment scores, (ii) higher 

number of unique fragments, and (iii) smaller fragments. In the following, we refer to the use 

of Tn5-H100 with the buffers provided by 10x Genomics as scTurboATAC vs scATAC for the 

use with Tn5-TXG. 

For further analysis, we selected high-quality cell populations of 5,000 to 6,000 cells for the 

three samples (Fig. 2A, red rectangle). The scTurboATAC protocol yielded an about 2-fold 

higher number of unique fragments normalized to sequencing depth than cells from the regular 

scATAC workflow (Fig. 2B). Similar to the mouse data, a higher number of unique fragments 

(absolute and normalized to sequencing depth) was detected in cryopreserved peripheral 

blood mononuclear cells (PBMC) as a test case when using Tn5-H100 as compared to Tn5-

TXGv2 (Fig. 2C, Fig. S2B). Embedding and clustering of both data sets revealed and 

increased resolution of the scTurboATAC data for both MEF (Fig. 2D) and PBMC data (Fig. 

2E). Using marker genes from our previous work (Muckenhuber et al., 2023) two distinct MEF 

subtypes (epithelial- and mesenchymal-like MEFs) were identified  after removing minor 

clusters 1 and 2 (scATAC) and cluster 1 (scTurboATAC) that showed increased apoptosis 

module scores (Fig. S2C). Cluster 4 of scATAC and cluster 2 of scTurboATAC showed 

increased mesenchymal-like MEF marker module scores (Fig. 2D, S3D). The epithelial-like 

MEF markers were enriched in cluster 3 of scATAC and clusters 3 and 4 of scTurboATAC 

(Fig. 2D, S3C). Thus, the scTurboATAC protocol resolves two epithelial-like clusters, while 

only one cluster was detected with the standard scATAC protocol. Likewise, the PBMC data 

set displayed an increased number of clusters (14 instead of 10). These resolution 

improvements obtained with the scTurboATAC protocol are likely to reflect a higher complexity 

of the data that arises from the higher number of unique fragments.  
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Fig. 2 Quality assessment of scTurboATAC data. (A) TSS enrichment score over log10 number of 
unique fragments of cell barcodes in scATAC (left), scATAC with Tn5-H30 (middle) and scTurboATAC 
(right) of 6h IFNβ-stimulated MEFs. Colors of points reflect density of cell barcodes. Grey area marks 
low-quality cell barcodes. Red rectangle marks selected high-quality cells. (B) Number of unique 
fragments per 10,000 raw reads (log10) in scATAC and scTurboATAC of 6h IFNβ-stimulated MEFs. 
(C) Same as panel B for scATAC and scTurboATAC of PBMCs. (D) UMAP embedding of 6h IFNβ-
stimulated MEFs from scATAC (left) and scTurboATAC (right). Each point represents one cell and is 
colored according to k-nearest neighbor cluster. (E) Same as panel D for PBMCs. 
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scTurboATAC improves the analysis of the transcription regulation  

scTurboATAC was further evaluated for the analysis of transcription factor (TF) binding and 

gene regulatory mechanisms in MEFs stimulated with IFNβ for 6 hours. Calling peaks from 

the pseudo-bulk data yielded a higher number of accessible peaks per cell with the 

scTurboATAC protocol (Fig. S3A, Fig. S3B).  

 

Fig. 3 Comparison of scATAC and scTurboATAC. MEFs stimulated with IFNβ for 6 hours were 
analyzed. (A) Accessibility footprints at TSSs (left), STAT1 motifs (middle) and CTCF motifs (right) from 
scATAC and scTurboATAC. (B) Number of co-accessible links in scATAC and scTurboATAC of 
epithelial- and mesenchymal-like MEFs. (C) ISG regulation mechanisms according to STAT1/2 binding 
after IFNβ treatment in epithelial- (left) and mesenchymal-like MEFs (right). Promoter bound STAT1/2 
(independent of the presence of additional links to distal STAT1/2 sites), blue; co-accessible link to a 
distal STAT1/2 peak, green; other ISGs, grey. (D) Co-accessibility in epithelial- (left) and mesenchymal-
like MEFs (right) at the Ifit ISG cluster. Top: browser tracks of aggregated pseudo-bulk chromatin 
accessibility from single cells of scATAC and scTurboATAC. Middle: 2 kb regions around peaks from 
pseudo-bulk chromatin accessibility (grey); STAT1/2 peaks from bulk ChIP-seq (black); gene 
annotation (red, blue). 1 kb regions around ISG TSSs from bulk RNA-seq are marked in blue. Bottom: 
co-accessible links from scATAC and scTurboATAC.  
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Furthermore, accessibility footprints at transcription start sites (TSSs) and at STAT1 and 

CTCF binding motifs showed higher enrichment in pseudo-bulk scTurboATAC than scATAC 

(Fig. 3A).  

Next, we applied our approach for co-accessibility analysis to MEF subtypes in scATAC and 

scTurboATAC using the RWire software as described previously (Muckenhuber et al., 2023). 

RWire reveals enhancer-promoter links from correlation between open sites of scATAC-seq 

data. For epithelial-like MEFs of scTurboATAC, only cluster 3 was considered. We observed 

twice as many co-accessible links above background co-accessibility and minimal percent 

accessible cells in epithelial- as well as mesenchymal-like MEFs of scTurboATAC than 

scATAC (Fig. 3B). Additionally, co-accessible links from scTurboATAC showed higher 

correlation coefficients and percent accessible cells than co-accessible links from scATAC 

(Fig. S3E). In our previous study, we observed that the transcription activation of ISGs is partly 

regulated by simultaneous STAT1 and STAT2 (STAT1/2) binding to ISG promoters as well as 

distal regulatory sites (Muckenhuber et al., 2023). We were able to link roughly 10 % of ISGs 

without STAT1/2 promoter binding to a distal STAT1/2 binding event by co-accessibility 

analysis of 6h IFNβ-stimulated epithelial- as well as mesenchymal-like MEFs from 

scTurboATAC (Fig. 3C). In contrast, only 5-8 % of ISGs were linked to a distal STAT1/2 

binding event by co-accessibility analysis of 6h IFNβ-stimulated epithelial- as well as 

mesenchymal-like MEFs from scATAC. An example for the improved detection of ISG 

regulation by distal STAT1/2 binding events with scTurboATAC is shown for the Ifit gene 

cluster in Fig. 3D. The 150 kb locus depicted contains six ISGs (Ifit1, Ifit1bl1, Ifit1bl2, Ifit2, Ifit3, 

and Ifit3b) that were previously identified in MEFs (Muckenhuber et al., 2023). For Ifit1, Ifit1bl2 

and Ifit3b promoters, direct STAT1/2 binding was observed in IFNβ-stimulated MEFs. We 

detected three co-accessible links between ISG promoters and distal STAT1/2 binding events 

in epithelial- and mesenchymal-like MEFs of scATAC. All co-accessible links were also 

detected in epithelial- and mesenchymal-like MEFs of scTurboATAC, where they showed 

higher confidence by higher percent accessible cells. In addition, six co-accessible links 

between ISG promoters and STAT1/2 binding events were only detected with scTurboATAC. 

In mesenchymal-like MEFs of scATAC, we detected one unspecific link between the Ifit2 

promoter and a distal peak without a STAT1/2 binding event or other ISG promoter. This link 

was not observed in mesenchymal-like MEFs of scTurboATAC. 

 

scTurboATAC enhances the cell type annotation 

Next, we compared scTurboATAC and scATAC with the Tn5-TXGv2 enzyme with respect to 

cell type resolution by clustering and marker gene activity (Fig. 4A, Tab. S2). The 
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scTurboATAC protocol specifically improved the detection of progenitor cells, classical 

monocytes/dendritic cells and provided a higher resolution of the B cell cluster (Fig. 4A, B). 

We identified a distinct B cell cluster in scTurboATAC (cluster 1) that was not resolved in 

scATAC data by integrating B cells from scATAC and scTurboATAC (Fig. S4B). When 

investigating the B cell clusters further, we found differential TF activities for PU.1-IRF, OCT2 

and ATF3 among others (Fig. 4B, C, Fig. S4C). While OCT2 has been observed in late state 

B cell differentiation (Corcoran et al., 1993), PU.1-IRF plays a role in earlier lymphoid 

maturation (Scott et al., 1994). This could account for their contrary activity scores. Elevated 

ATF3 activity was mainly found in cluster 1 of scTurboATAC data, potentially pointing to 

stress-induced activation of B cells to repress pro-apoptotic genes and cytokine production 

(Ku and Cheng, 2020). 

 

Fig. 4 scTurboATAC resolves additional cell types in PBMCs. (A) UMAP embedding of PBMCs 
from scATAC (left) and scTurboATAC (right). Cells are colored according to annotated cell type by 
marker gene activity scores. (B) UMAP embedding of PBMC B cells from scATAC (top) and 
scTurboATAC (bottom). Cells are colored according to k-nearest neighbor clusters. (C) Same as panel 
B with cell coloring according to imputed transcription factor motif deviation scores.  
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scTurboATAC can be integrated into an improved multi-omics analysis 

Multi-omics approaches allow to directly link epigenetic heterogeneity with transcriptional 

profiles. We thus wanted to further exploit scTurboATAC for this type of application and 

adapted the loading of the transposase to be compatible with the 10x Genomics multiome 

chemistry. The latter utilizes a spacer oligonucleotide to add cell barcodes to the Tn5 

fragments presumably by ligation. To account for this difference, we changed the 

oligonucleotides for loading (Table 1) and additionally used a Protein A-tagged Tn5 for a 

single-cell C&T-seq assay with RNA information from the same cell (Fig. 1B). To avoid self-

dimerization for the multiome-ATAC workflow a complementary oligonucleotide with a 

phosphorothioate (PTO) backbone was used. This modification can be omitted for multiome-

C&T due to the Tn5 capture and washing of unbound Tn5. Phosphorylation of Tn5_read1 was 

found to be essential to facilitate the barcode ligation step in the droplets.  

In agreement with the scTurboATAC data, we observed a higher number of unique fragments 

normalized to sequencing depth when using our adapted Tn5-H100 in comparison to Tn5-

TXGv2 with the multiome chemistry in PBMCs (Fig. 5A left) while the number of reads in 

TSSs was similar (Fig. S5A, B). UMI counts of transcripts normalized to sequencing depth 

showed the same yield in comparison to the standard workflow (Fig. 5A right). The number 

of clusters was higher for scMultiome-ATAC with Tn5-H100 (Fig. 5B) compared to the 

standard scMultiome-ATAC with Tn5-TXGv2 (Fig. 5C) for both for the ATAC readout alone as 

well as co-embedded ATAC and RNA data. When using only the gene expression data, the 

number of clusters remained the same (Fig. 5B, C). Thus, the improved ATAC reaction did 

not compromise the RNA readout in the scMultiome-ATAC protocol.  

The scC&T analysis was performed in isogenic TF1 wildtype and mutant cell lines that carry 

the IDH2 R140Q mutation (Stein, 2016) with histone H3 trimethylation at lysine 27 

(H3K27me3) as C&T target. Data from both samples show a similar yield in the number of 

H3K27me3 fragments (Fig. 5D left) with a bias for high-nucleosomal fragments (Fig. S5C), a 

high fraction of reads in peaks (Fig. S5D) and comparable UMI transcript counts (Fig. 5D 

right). Very broad regions of H3K27me3 enrichment were observed as depicted for an 

exemplary region of the HOXC gene cluster in Fig. 5E left. In both cell lines all genes within 

this H3K27me3-rich region were silenced while adjacent genes lacking H3K27me3 signal 

were highly expressed. UMAP of C&T and RNA data from both cell lines showed separate 

embedding with some overlap according to IDH2 mutation status (Fig. 5E right). Taken 

together, these data illustrate the versatility and specificity of the scTurboATAC and 

scMultiome-C&T techniques, which open up new ways for data analysis and experimental 

readouts.  
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Fig. 5 Multiome analysis. (A) scMultiome-ATAC analysis of PBMCs. The log10 number of unique 
fragments per 10,000 raw reads (ATAC, left) and UMI counts per 10,000 raw reads (RNA, right) is 
shown. (B) UMAP embedding of PBMCs from scMultiome-ATAC with Tn5-H100 based on ATAC (left), 
RNA (middle) and combined ATAC and RNA (right) readouts. Cells are colored according to k-nearest 
neighbor clusters.  (C) Same as panel B but for the scMultiome-ATAC standard protocol with 
Tn5-TXGv2. (D) Analysis of TF1 wildtype and IDH2 mutated cell lines by scMultiome-C&T. The log10 
number of unique fragments for H3K27me3 (left) and of UMI counts for RNA (right) are plotted. 
(E) scMultiome-C&T of TF1 wildtype and IDH2 mutated cells. Left, browser tracks of aggregated 
pseudo-bulk H3K27me3 (grey) and RNA (black) for an exemplary region with the genes on the plus 
(red) and minus (blue) strand shown at the bottom. Right, UMAP co-embedding of H3K27me3 and 
RNA. Cells are colored according to sample. 
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Discussion 

Single-cell sequencing applications are frequently limited by data sparsity, which has been 

addressed both experimentally and bioinformatically (Lahnemann et al., 2020;Bouland et al., 

2023;Sant et al., 2023). One strategy to counteract the sparsity for scATAC-seq data is to 

aggregate multiple similar cells (Pliner et al., 2018;Chen et al., 2019). However, this leads to 

the loss of information on stochastic differences between individual cells. The scTurboATAC 

protocol introduced here improved the experimental data acquisition and resulted in a higher 

library complexity with a consistently lower number of duplicates and higher number of 

integration events per cell (Table S1). These enhancements led to better results in the 

downstream analysis as shown for cell clustering and computation of TF motif footprints and 

activities. Furthermore, scTurboATAC improved the co-accessibility analysis to detect 

interactions between cis-regulatory elements, which was conducted here without aggregating 

cells to capture stochastic changes of chromatin accessibility. 

Plate-based scATAC methods, similar to RNA analysis, could perform better than the droplet-

based method used here (Xu et al., 2021). The droplet-based approaches, however, allow 

processing of several samples with thousands of cells each, which is needed to resolve cell 

types in complex tissues. Their throughput can be further improved by multiplexing samples 

combined with overloading the chip (Han et al., 2022). Thus, it will be interesting to compare 

the sensitivity of our scTurboATAC protocol to plated-based scATAC-seq methods and to 

evaluate its integration into multiplexing approaches. 

As stated above, the relationship between enhancer activity, transcription factor binding and 

gene expression is of general interest (Fulco et al., 2019;Riegel et al., 2023;Uyehara and 

Apostolou, 2023). Techniques exist that allow the integration of separately acquired data types 

from the same sample. However, it is difficult to separate biological differences from 

confounding technical biases that need to be removed via the integration. Multiome readouts 

overcome this problem but frequently provide lower sensitivity (Dimitriu et al., 2022). Thus, 

improving sensitivity for each individual readout is crucial. To this end, we here also adapted 

and optimized loading of Tn5 to make it compatible with existing multiome workflows for which 

the adapter configuration is unknown. Furthermore, we demonstrate that our scMultiome-

ATAC protocol improved data quality and reduced sparsity without affecting scRNA-seq data 

quality.  

In comparison to the scMultiome-ATAC analysis, the combination of scRNA with scC&T-seq 

is more difficult to implement (Lahnemann et al., 2020;Lee et al., 2020), especially for 

repressive or promoter distal histone marks like H3K9me3 and H3K27me3. To address this 

point, we here also devised a scMultiome-C&T protocol with specific adapters loaded on a 

Protein A-tagged Tn5 that can be easily applied by other laboratories. A similar workflow has 
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been described before but as a single readout without transcriptome information (Kaya-Okur 

et al., 2019). Here, we used our scMultiome-C&T method to analyze the repressive 

H3K27me3 histone modification together with the RNA from the same cell. An enrichment of 

H3K27me3 and repression of transcription was detected at loci that were previously described 

as silenced by H3K27me3 (Soshnikova and Duboule, 2009;Noordermeer et al., 2011). We 

expect that our technique will work well for all C&T-grade antibodies and can thus easily be 

adapted to other histone modifications of interest. 

In summary, the scTurboATAC, scMultiome-ATAC and scMultiome-C&T protocols described 

here enhance the sensitivity and versatility of a variety of approaches for analyzing chromatin 

features in single cells. The improved data quality translates directly into better results for 

various types of downstream analysis. Accordingly, we anticipate that the methodological 

enhancement we have made will help to better resolve heterogeneity and variation of 

epigenetic gene regulation. 
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Methods 

Tn5 loading for scTurboATAC 

Lyophilized adapter oligonucleotides were resuspended in annealing buffer (50 mM NaCl, 40 

mM Tris·HCl, pH 8) at 100 µM concentration. Adapters (Table 1) were preannealed (read 1 

with the mosaic end (ME) sequence and read 2 with ME) separately on a thermocycler for 2 

min at 85 °C followed by cooling down to 20 °C with 0.1 °C per minute. Glycerol was then 

added to a final concentration of 50% (v/v) and the adapters were stored at -20 °C. Purified 

unloaded Tn5 was obtained from the EMBL Protein Expression and Purification Core Facility, 

which was produced and stored as described previously (Hennig et al., 2018). For Tn5 

assembly, transposase, annealed primer pairs and dilution buffer (DB, 50 mM Tris·HCl, pH 

7.5, 100 mM NaCl, 0.1 mM EDTA, 1 mM DTT, 0.1 % NP-40, 50 % glycerol) were mixed with 

equal volumes and incubated for 30 min at room temperature. The loaded Tn5 was then 

diluted to 1:3 in DB yielding the Tn5-H100 preparation and stored at -20 °C. 

 

Comparing Tn5-H activity to Tn5-TXG 

Activity was assesed by qPCR measuring the efficiency in generating fragmented lambda 

DNA. Different Tn5 preparations were used at the same volume with 10 ng of lambda DNA, 

2.5 µl tagmentation buffer (20 mM Tris-HCl pH 7.5, 20 mM MgCl2, 50 % v/v DMF) or 10x 

Genomics tagmentation buffer as indicated.  For the reaction, 1.25 µl phage DNA (10 ng), and 

1.25 µl Tn5 enzyme were mixed and incubated for 10 min at 55 °C. The reaction was stopped 

by adding 1.25 µl 0.2 % SDS. The mix was diluted 1:100 in nuclease free water. A 10 µl qPCR 

mix was used that contained 5 µl 2x KAPA SYBR Fast, 0.2 µl 10 µM i7 adapter, 0.2 µl 10 µM 

i5 adapter, 1 µl diluted template DNA and 3.6 µl nuclease free water. The PCR program was 

72 °C for 5 min, 95°C for 30 s, followed by 25 cycles of 95 °C for 10 s, 60 °C for 30 s and 72 

°C for 60 s. Relative activities were calculated from the measured Ct values. 

 

scTurboATAC library preparation 

For scTurboATAC, the transposase provided with the ATAC kit from 10x Genomics was 

replaced with Tn5-H100. Purified nuclei were processed using the standard 10x ATAC 

protocol according to the user guides for Chromium Next GEM Single Cell ATAC v1.1 or v2 

kits (CG000496, 10x Genomics) as indicated. MEFs were cultured and treated as previously 

described (Muckenhuber et al., 2023). PBMCs were isolated as previously described and 

stored viably frozen in serum containing DMSO (Mallm et al., 2019). Prior to the experiments 

they were thawed in a water bath and immediately processed. For transposition, 10,000 nuclei 
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were used and loaded on to the Chromium Next GEM Chip H (PN-1000161). Libraries were 

generated using standard reagents. Quality control and molarity calculations of the final 

libraries were performed with the Qubit 3.0 Fluorometer (Q33216, Invitrogen) and the 4200 

tapestation system (Agilent Technologies). For multiome analysis the appropriately loaded 

Tn5 was used (Table 1), while all downstream reactions were performed with standard 

multiome reagents from 10x Genomics.  

 

scC&T & RNA from the same cell 

TF1-IDH2 wildtype and mutant cell lines were acquired form ATCC (Manassas, Virginia, USA, 

wildtype, CRL-2003; IDH2 mutant, CRL-2003). They were cultured following the providers 

instructions. Cells were harvested, washed once in PBS and 1x106 cells were fixed with 1 ml 

0.2 % PFA for five min at room temperature. Fixation was stopped with 125 mM glycine for 5 

min followed by one wash with PBS. Cells were then resuspended in 500 µl ice cold nuclei 

buffer and incubated for 10 min on ice. Cells were pelleted and resuspended in 500 µl antibody 

buffer (2 mM EDTA, 0.1 % BSA, 0.04 % digitonin, 20 mM HEPES pH 7.5, 150 mM NaCl and 

0.5 mM spermidine).  

A 10 µl volume of H3K27me3 (cell signalling, 9733) and 12.5 µl RNase inhibitor (40 U/µl) 

were added and incubated over night at 4 °C. Cells were washed with wash buffer (0.04 % 

digitonin, 20 mM HEPES pH 7.5, 150 mM NaCl and 0.5 mM spermidine), resuspended in 

500 µl wash buffer containing 10 µl 1 µg/µl anti-rabbit secondary antibody raised in guinea pig 

(Sigma-Aldrich, SAB3700889) and 1 U/µl RNase inhibitor. After 30 min at room temperature 

cells were washed three times with wash buffer with five min incubation time per wash and 

resuspended in Tn5 buffer (0.01 % digitonin, 20 mM HEPES pH 7.5, 150 mM NaCl, 0.5 mM 

spermidine and 1X protease inhibitor). Cells were counted and 500,000 cells were used from 

this point forward. 10 µl of loaded proteinA-Tn5 was added and incubated at room temperature 

for 30 min. After three washes with wash buffer, cells were resuspended in tagmentation buffer 

(10 mM Tris pH 7.5, 10 mM MgCl, 5 mM HEPES, 50 mM NaCl, 25 % DMF, 0.01 % digitonin, 

1 U/µl RNase inhibitor), transferred to a PCR tube and incubated for one hour at 37 °C. A 

volume of 15 µl was then used for GEM formation with the multiome kit from 10x Genomics.  

 

Sequencing 

Multiplexed library pools were generated at 10 nM concentrations of each library and 

sequenced on NovaSeq 6000 system (Illumina, v1.5). Sequencing was paired end with 

Read1N and Read2N sequenced with 50 cycles each, i7 (index) sequenced with 8 cycles and 

i5 using 10x Genomics barcodes with 16 cycles for ATAC and 24 cycles for multiome-ATAC 
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and multiome-C&T. Sequencing depth was at least 25,000 read pairs per nucleus. RNA 

libraries were sequenced paired end with 28 bp and 90 bp for read 1 and read 2, respectively. 

 

Analysis of scATAC-seq data from MEFs 

Data were demultiplexed and aligned with Cell Ranger ATAC count v2.0.0 (10x Genomics) 

using the provided mouse mm10 reference. Further processing of data was conducted with 

ArchR (v1.0.3) in R (v4.2.2) (Granja et al., 2021). Non-cell barcodes were removed by applying 

a minimal threshold to log10 number of fragments (3.8 for conventional scATAC, 3.9 for 

scATAC with Tn5-H30, and 4.3 for TurboATAC) and TSS enrichment score (5 for conventional 

ATAC, 12 for scATAC with Tn5-H30 and TurboATAC). This yielded 5153 cells for conventional 

scATAC, 5809 cells for scATAC with Tn5-H30, and 5612 cells for TurboATAC. Cell doublets 

were removed using Amulet (scDblFinder v1.12.0) (Thibodeau et al., 2021) and single cells 

were embedded in two-dimensional space using an accessibility matrix of 500 bp tiles, 

Iterative LSI (LSI components 2-10 for conventional ATAC, 2-12 for TurboATAC) and UMAP. 

Cells were clustered by SNN modularity optimization with a resolution of 0.1. Apoptotic cell 

clusters were identified by marker gene modules of single-cell gene activity scores (Casp3, 

Parp1, Bax, Bak1, Bid, Bbc3, Pmaip1, Bcl2, Bcl2l1, Mcl1, Trp53, Cycs, Apaf1, Tnfrsf10b, and 

Fas; (Galluzzi et al., 2018)) and removed for further analyses.  

Sample-specific and merged peak sets were obtained from pseudo-bulk accessibility data 

using MACS2 (Zhang et al., 2008) in ArchR (extendSummits = 1000; reproducibility = 1). 

Transcription factor binding motifs were annotated in sample-specific peaks with Homer mm10 

motifs from chromVARmotifs (v0.2.099) (Schep et al., 2017). Transcription factor motif 

footprints were computed using ArchR (no Tn5 bias normalization, 5 bp smooth window). MEF 

subtype clusters were identified as epithelial- and mesenchymal-like MEFs by marker gene 

modules of single-cell gene activity scores of epithelial- and mesenchymal-like MEF markers 

from our previous study (Muckenhuber et al., 2023). 

Simultaneously accessible regions in the same cell were determined by co-accessibility 

analysis with RWire (https://github.com/RippeLab/RWire-IFN) based on our previously 

described RWire approach (Mallm et al., 2019;Muckenhuber et al., 2023). Cell numbers 

between the samples and subtypes were matched to 1,617 cells. The consensus peak set 

was used for all samples and subtypes. Pearson correlation coefficients were calculated for 

peaks within 1 Mb for each sample and subtype without aggregation of single cells. Only co-

accessible links with positive correlation above background co-accessibility threshold r (0.088 

for epithelial-like MEFs from conventional ATAC, 0.079 for mesenchymal-like MEFs from 

conventional ATAC, 0.066 for epithelial-like MEFs from TurboATAC, 0.066 for mesenchymal-

like MEFs from TurboATAC) were considered. The background co-accessibility threshold was 
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determined by the 99th co-accessibility percentile from randomly shuffled accessibility values 

over cells and peaks. Co-accessible links were further filtered by a lower threshold of 5 % 

accessible cells in the linked peaks. STAT1/2 bound sites and TSSs of interferon-stimulated 

genes from our previous study (Muckenhuber et al., 2023) at co-accessibly linked peaks were 

annotated.  

 

Analysis of scATAC-seq data from PBMCs 

Data were demultiplexed and aligned with Cell Ranger ATAC count v2.1.0 (10x Genomics) 

using the provided human GRCh38 reference. Further processing of data was conducted with 

ArchR (v1.0.3) in R (v4.2.2) (Granja et al., 2021). Non-cell barcodes were removed by applying 

a minimal threshold to log10 number of fragments (4.1 for conventional ATAC, and 4.4 for 

TurboATAC) and TSS enrichment score (10 for conventional ATAC, 8 for TurboATAC). This 

yielded 7658 cells for conventional ATAC, and 8309 cells for TurboATAC. Cell doublets were 

removed using Amulet (scDblFinder v1.12.0) (Thibodeau et al., 2021) and single cells were 

embedded in two-dimensional space using an accessibility matrix of 500 bp tiles, Iterative LSI 

(LSI components 2-21) and UMAP. Cells were clustered by SNN modularity optimization with 

a resolution of 0.2.  

Clusters were assigned to cell types by marker gene modules of single-cell gene activity 

scores of established markers (Table S2). Sample-specific and merged peak sets were 

obtained from pseudo-bulk accessibility data using MACS2 (Zhang et al., 2008) in ArchR 

(extendSummits = 1000; reproducibility = 1). Transcription factor binding motifs were 

annotated in sample-specific peaks with Homer hg38 motifs from chromVARmotifs (v0.2.0) 

(Schep et al., 2017). A subset of only B cells was embedded in two-dimensional space using 

an accessibility matrix of 500 bp tiles, Iterative LSI (LSI components 2-8) and UMAP. Cells 

were clustered by SNN modularity optimization with a resolution of 0.25. B cells from 

conventional ATAC and TurboATAC were integrated using Harmony (v0.1.1) (Korsunsky et 

al., 2019). ChromVAR deviations were calculated for 200 bp windows around top 1000 

transcription factor binding motifs in sample-specific peak sets by decreasing scores (v1.20.0) 

(Schep et al., 2017). ChromVAR deviations were imputed using MAGIC (van Dijk et al., 2018) 

in ArchR.  

 

Analysis of scMultiome-ATAC data from PBMCs 

Data were demultiplexed and aligned with Cell Ranger ARC count v2.0.2 (10x Genomics) 

using the provided human GRCh38 reference. Further processing of data was conducted with 

ArchR (v1.0.3) (Granja et al., 2021) and Seurat (v4.3.0) (Stuart et al., 2019) in R (v4.2.2). Non-

cell barcodes in ATAC were removed by applying a minimal threshold of 3.8 and 1000 to log10 
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number of fragments and reads in TSS, respectively. This yielded 4563 cells for conventional 

ATAC, 7405 cells for ATAC Tn5-H50, and 6690 cells for TurboATAC. ATAC cell doublets were 

removed using Amulet (scDblFinder v1.12.0) (Thibodeau et al., 2021), cells with a blacklist 

ratio above 0.01 and/or nucleosome ratio above 3 were excluded, and single cells were 

embedded in two-dimensional space using an accessibility matrix of 500 bp tiles, Iterative LSI 

(LSI components 2-20) and UMAP. Cells were clustered by SNN modularity optimization with 

a resolution of 0.3. 

Non-cell barcodes in RNA were removed by applying a minimal threshold of 100 and 500 to 

number of detected genes and number of UMI counts, respectively, as well as a maximal 

threshold of 40 % to percentage of mitochondrial UMI counts. This yielded 4587 cells for RNA 

of conventional ATAC, 7916 cells for RNA of ATAC Tn5-H50, and 7101 cells for RNA of 

TurboATAC. RNA cell doublets were removed using Scrublet with a cutoff of 0.15 (v0.2.3) 

(Wolock et al., 2019) in Python v3.10.4 (pandas v1.4.3, scipy v1.8.1) and single cells were 

embedded in two-dimensional space using SCTransform (v0.3.5) (Hafemeister and Satija, 

2019), PCA (PCs 1-20) and UMAP. Cells were clustered by SNN modularity optimization with 

a resolution of 0.5. Co-embedding of single cells using ATAC and RNA information was 

conducted using Signac (v1.9.0) (Stuart et al., 2021). Combining filtered RNA and ATAC cell 

information yielded 3620 cells for RNA/ATAC of conventional ATAC, 5999 cells for RNA/ATAC 

of ATAC Tn5-H50, and 5077 cells for RNA/ATAC of TurboATAC. Single cells were embedded 

using LSI (LSI components 2-25) for ATAC, SCTransform and PCA (PCs 1-30) for RNA, 

weighted nearest neighbor graph and UMAP. Cells were clustered by SNN modularity 

optimization with a resolution of 0.8.  

 

Analysis of scMultiome-C&T (H3K27me3) data from TF1 cell lines 

Data were demultiplexed and aligned with Cell Ranger ARC count v2.1.0 (10x Genomics) 

using the provided human GRCh38 reference. Further processing of data was conducted with 

ArchR (v1.0.3) (Granja et al., 2021) and Seurat (v4.3.0) (Stuart et al., 2019) in R (v4.2.2). 

Browser tracks of pseudo-bulk RNA and H3K27me3 signal were generated with plotgardener 

(v1.4.1) (Kramer et al., 2022). For H3K27me3 peak calling, MACS2 was used with the broad 

setting and keeping one read duplicate resulting in 57,533 peaks that were used in 

downstream analysis with ArchR. Non-cell barcodes in H3K27me3 were removed by applying 

a minimal threshold of 500 and 0.1 to number of fragments and fraction of reads in peaks, 

respectively. This yielded 2786 cells for H3K27me3 of TF1-IDH2wt, and 2653 cells for 

H3K27me3 of TF1-IDH2mut. Non-cell barcodes in RNA were removed by applying a minimal 

threshold of 100 and 500 to number of detected genes and number of UMI counts, 

respectively, as well as a maximal threshold of 25 % to percentage of mitochondrial UMI 
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counts. This yielded 2928 cells for RNA of TF1-IDH2wt, and 2956 cells for RNA of TF1-

IDH2mut. Co-embedding of single cells using H3K27me3 and RNA information was 

conducted using Signac (v1.9.0) (Stuart et al., 2021). Combining filtered RNA and H3K27me3 

cell information yielded 1803 cells for RNA/H3K27me3 of TF1-IDH2wt, and 1800 cells for 

RNA/H3K27me3 of TF1-IDH2mut. Single cells were embedded using LSI (LSI components 3-

20) for H3K27me3, SCTransform (v0.3.5) (Hafemeister and Satija, 2019) and PCA (PCs 1-

20) for RNA, weighted nearest neighbor graph and UMAP. 

 

Data availability 

Single cell sequencing data are available via GEO accession number GSE235506. 
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Table 1. Oligonucleotides used for Tn5 loading  

Oligo-
nucleotide a 

Sequence Assay Sample 

read1 5′-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG-3’ 

TurboATAC 
 

MEFs 
plus IFNβ,  

PBMCs 

phos-read2 
5′-[phos]GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG-
3’ 

blocked 
phos-ME 

5’-[phos]C*T*G*T*C*T*C*T*T*A*T*A*C*A*[23ddC]-3’ 

phos-read1 5’-[phos]TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG-3’ 

TurboATAC 
& RNA 

PBMCs read2 5′-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG-3’ 

phos-
ME_PTO 

5’-[phos]C*T*G*T*C*T*C*T*T*A*T*A*C*A*C*A*T*C*T-3’ 

phos-read1 5’-[phos]TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG-3’ 

C&T & 
RNA 

TF1 wt, 
TF1 

IDHmut2 
read2 5′-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG-3’ 

phos-ME 5’-[phos]CTGTCTCTTATACACATCT-3’ 

 

a Oligonucleotides where synthesized with the indicated modifications: phos, 5’-phosphate; 

PTO, phosphorothioate backbone indicated by the *. ME stands for mosaic end sequence. 
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Supplementary Figures 

 

 

 
Figure S1. Tn5 activity measurements by qPCR. (A) The in-house Tn5-H preparations at 

three different concentrations (Tn5-H100, Tn5-H30 and Tn5-H6) were tested against Tn5-

TXGv1.1 and Tn5-TXGv2 that are provided in the kits from 10x Genomics. Activity was 

calculated from the yield of fragmented lambda phage DNA measured by qPCR. Tn5-H100 

displayed the highest activity while Tn5-TXGv1.1 was more efficient than the later introduced 

Tn5-TXGv2 enzyme. Error bars display standard deviation from triplicates.  (B) Comparison 

of Tn5 activity in the buffer from 10x Genomics against a standard Tn5 reaction buffer (Tag 

buffer) for the different Tn5 enzyme preparations. The buffer provided in the 10x Genomics 

kits results in a higher activity for both the Tn5-H100 as well as the Tn5-ILMN (TDE1 enzyme, 

#20034197, Illumina) preparations. No difference between the two buffers was observed for 

Tn5-TXGv2. Error bars display standard deviation from triplicates.  
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Figure S1. Quality assessment of scTurboATAC data. (A) Fragment size distribution in 

scATAC with Tn5-TXGv1.1 and Tn5-H30 versus scTurboATAC protocols for MEFs stimulated 

for 6h with IFNβ. (B) TSS enrichment score against log10 number of unique fragments of cell 

barcodes in scATAC with Tn5-TXGv2 (left) and scTurboATAC (right) for PBMCs. Colors of 

points reflect density of cell barcodes. Grey area marks low-quality cell barcodes. Red 

rectangle marks selected high-quality cells. (C) Apoptosis module score per cell in scATAC 

with Tn5-TXGv1.1 (left) and scTurboATAC (right) of 6h IFNβ-stimulated MEFs. 
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Figure S2. Investigation of transcription regulation with scTurboATAC. MEFs stimulated 

for 6h with IFNβ were studied. The scATAC data refer to the Tn5-TXGv1.1 enzyme. (A) 
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Number of peaks from pseudo-bulk chromatin accessibility of scATAC, scTurboATAC and the 

merged peak set, which additionally included data from scATAC with Tn5-H30. (B) Number 

of accessible peaks detected per cell in scATAC and scTurboATAC using the merged peak 

set. (C) Epithelial-like MEF module score per cell in scATAC and scTurboATAC. (D) 

Mesenchymal-like MEF module score per cell in scATAC and scTurboATAC. (E) Correlation 

coefficient and percent accessible cells of co-accessible links from scATAC (left) and 

scTurboATAC (right). Colors of points reflect density of co-accessible links. Dashed lines 

represent background co-accessibility cutoff on correlation coefficient and minimal 5 % cutoff 

on accessible cells. 
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Figure S3. Resolving cell types in PBMCs with scTurboATAC. The scATAC data refer to 

the Tn5-TXGv2 enzyme. (A) Number of accessible peaks per cell in scATAC and 

scTurboATAC using the merged peak set. (B) Integrated UMAP embedding of B cells filtered 

from PBMC data set for scATAC and scTurboATAC. Integrated UMAP embeddings split by 

samples scATAC (left) and scTurboATAC (right) are shown. Cells are colored according to 

sample-specific k-nearest neighbor clusters. (C) Transcription factor motif deviation scores 

(non-imputed) in k-nearest neighbor clusters of scATAC (top) and scTurboATAC (bottom). 
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Figure S5. Quality assessment of single cell multiome data. (A) TSS enrichment score 

over log10 number of unique fragments of cell barcodes in scMultiome-ATAC of PBMCs with 

the indicated Tn5 preparations. Colors of points reflect density of cell barcodes. Grey area 

marks low-quality cell barcodes. (B) Same as panel A for log10 number of reads in TSS over 

log10 number of unique fragments. (C) Fragment size distribution for scMultiome-C&T against 

H3K27me3 in TF1-IDH2wt and TF1-IDH2mut. (D) Fragments of reads in peaks (FRIP) scores 

for H3K27me3 per cell in TF1-IDH2wt and TF1-IDH2mut from the scMultiome-C&T analysis.  
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Supplementary Tables 

Table S1. Sequencing metrics of scATAC and scTurboATAC analysis 

 MEF 6h IFN PBMC 

 
scATAC with 
Tn5-TXGv1.1 

scATAC with 
Tn5-H30 

scTurboATAC 
scATAC with 
Tn5-TXGv2 

scTurboATAC 

Sequenced 
read pairs 

827,356,762 1,221,969,310 1,304,430,940 1,466,934,091 1,468,516,560 

Duplicates 70.1 % 75.8 % 45.9 % 66.6 % 52.2 % 

Mapped read 
pairs 

92.2 % 88.2 % 87.7 % 94.0 % 90.5 % 

Fragments 
nucleosome-
free regions 

40.6 % 54.5 % 64.8 % 50.4 % 47.5 % 
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Table S2. Marker genes of hematopoietic cell types  

 

Cell type Marker gene Reference 

Naïve CD8+ T cells 
CD8A, GZMB, CD3D, CD34, 
LEF1 

(Terstappen et al., 1992; 
Uhlen et al., 2019) 

Mature CD8+ T cells CD8A, GZMB, CD3D, CD2 (Uhlen et al., 2019) 

Naïve CD4+ T cells 
CD4, IL7R, CCR7, CD3D, CD34, 
LEF1 

(Terstappen et al., 1992; 
Uhlen et al., 2019) 

Mature CD4+ T cells 
CD4,IL7R, S100A4, CD3D, CD2, 
IL2, TNF, IL21 

(Uhlen et al., 2019) 

NK cells 
GNLY, NKG7, GZMB, NCAM1, 
FCGR3A 

(Uhlen et al., 2019; Karlsson 
et al., 2021) 

B cells MS4A1, CD79A, CD74, CD19 
(Uhlen et al., 2019; Karlsson 
et al., 2021) 

Progenitor cells 
CD34, KIT, PROM1, PTPRC 
(negative marker), CD38 
(negative marker) 

(Terstappen et al., 1992; 
Monaco et al., 2019) 

Classical monocytes CD14, LYZ, CST3 (Uhlen et al., 2019) 

Non-classical 
monocytes 

FCGR3A, MS4A7 (Uhlen et al., 2019) 

Dentritic cells FCER1A, CST3, CD74 (Uhlen et al., 2019) 

Basophils ENPP3, CD69, CCR3, PTGDR2 
(Monaco et al., 2019; Uhlen 
et al., 2019) 

Neutrophils 
CEACAM8, ITGAM, FCGR3B, 
PTPRC 

(Uhlen et al., 2019)(Monaco 
et al., 2019) 

Eosinophils EPX, RNASE2, CLC, SIGLEC8 (Uhlen et al., 2019) 

Erythrocytes 
HBA2, HBB, HBA1, SLC4A1, 
EPB41 

(Karlsson et al., 2021) 

Platelets PPBP, ITGA2B, PF4 
(Shattil et al., 1985; Poncz et 
al., 1987; Majumdar et al., 
1991)  
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Table S3. Sequencing metrics of scMultiome-ATAC analysis in PBMCs 

 Tn5-TXGv2 Tn5-H50 Tn5-H100 

Sequenced ATAC read pairs 1,304,897,617 1,431,221,793 1,444,079,941 

Sequenced RNA read pairs 714,778,267 644,951,970 716,455,503 

Duplicates ATAC 68.5 % 67.2 % 57.3 % 

Duplicates RNA 92.3 % 91.8 % 92.2 % 

Mapped ATAC read pairs 92.5 % 91.0 % 91.2 % 

Mapped RNA read pairs 61.4 % 53.1 % 51.8 % 
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Table S4. Sequencing metrics of scMultiome-C&T in TF1 cell lines 

 TF1-IDH2wt TF1-IDH2mut 

Sequenced H3K27me3 read pairs 486,259,010 468,044,936 

Sequenced RNA read pairs 42,673,800 36,916,878 

Duplicates H3K27me3 96.6 % 96.6 % 

Duplicates RNA 27.0 % 29.5 % 

Mapped H3K27me3 read pairs 84.1 % 83.5 % 

Mapped RNA read pairs 68.5 % 68.5 % 

 

  



 

 12 

Supplementary References 

Karlsson, M., Zhang, C., Mear, L., Zhong, W., Digre, A., Katona, B., et al. (2021). A single-cell 

type transcriptomics map of human tissues. Sci Adv 7(31). doi: 10.1126/sciadv.abh2169. 

Majumdar, S., Gonder, D., Koutsis, B., and Poncz, M. (1991). Characterization of the human 

beta-thromboglobulin gene. Comparison with the gene for platelet factor 4. Journal of 

Biological Chemistry 266(9), 5785-5789. doi: 10.1016/s0021-9258(19)67665-9. 

Monaco, G., Lee, B., Xu, W., Mustafah, S., Hwang, Y.Y., Carre, C., et al. (2019). RNA-Seq 

Signatures Normalized by mRNA Abundance Allow Absolute Deconvolution of Human 

Immune Cell Types. Cell Rep 26(6), 1627-1640 e1627. doi: 

10.1016/j.celrep.2019.01.041. 

Poncz, M., Surrey, S., LaRocco, P., Weiss, M.J., Rappaport, E.F., Conway, T.M., et al. (1987). 

Cloning and characterization of platelet factor 4 cDNA derived from a human 

erythroleukemic cell line. Blood 69(1), 219-223. doi: 10.1182/blood.V69.1.219.219. 

Shattil, S.J., Hoxie, J.A., Cunningham, M., and Brass, L.F. (1985). Changes in the platelet 

membrane glycoprotein IIb.IIIa complex during platelet activation. J Biol Chem 260(20), 

11107-11114. 

Terstappen, L.W., Huang, S., and Picker, L.J. (1992). Flow cytometric assessment of human 

T-cell differentiation in thymus and bone marrow. Blood 79(3), 666-677. doi: 

10.1182/blood.V79.3.666.666. 

Uhlen, M., Karlsson, M.J., Zhong, W., Tebani, A., Pou, C., Mikes, J., et al. (2019). A genome-

wide transcriptomic analysis of protein-coding genes in human blood cells. Science 

366(6472). doi: 10.1126/science.aax9198. 

 


	Enhancing sensitivity and versatility of Tn5-based single cell omics
	Abstract
	Introduction
	Results
	scTurboATAC can be integrated into an improved multi-omics analysis

	Methods
	Acknowledgments

