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Abstract 
Various mechanisms have been proposed to explain gene activation and co-regulation, 
including enhancer-promoter interactions via chromatin looping and the enrichment of 
transcription factors into hubs or condensates. However, these conclusions often stem from 
analyses of individual loci, and genome-wide studies exploring mechanistic differences with 
coupled gene expression are lacking. In this study, we dissected the proinflammatory gene 
expression program induced by TNFα in primary human endothelial cells using NGS- and 
imaging-based techniques. Our findings, enabled by our novel RWireX approach for single-
cell ATAC-seq analysis, revealed two distinct regulatory chromatin modules: autonomous links 
of co-accessibility (ACs) between separated sites and domains of contiguous co-accessibility 
(DCs) with increased local transcription factor binding. Genes in ACs and DCs exhibited 
different transcriptional bursting kinetics, highlighting the existence of two structurally and 
functionally distinct regulatory chromatin modules in the proinflammatory response. These 
findings provide a novel mechanistic framework for understanding how cells achieve rapid and 
precise gene expression control. 
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Graphical abstract 

  

 

Highlights 

• Two distinct, non-mutually exclusive chromatin modules, ACs and DCs, were identified by 
deep scATAC-seq that regulate proinflammatory gene expression. 
• ACs represent long-range genomic interactions with regulation occurring more by 
transcription burst frequency. 
• DCs are regions of increased local transcription factor binding that can modulate 
transcription burst size. 
• The AC/DC model integrates sequencing-based evidence for chromatin looping with 
microscopy observations of transcription factor hubs/condensates into a unified model. 
• Our findings provide a novel framework for understanding how cells control kinetics and 
strength of transcription activation. 

 
 
Running title: Chromatin modules for gene co-regulation 

 

Key words: transcriptional co-regulation; single-cell ATAC-seq; NF-κB pathway; transcription 
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Introduction 
Transcription in eukaryotes is a discontinuous process where genes alternate between bursts 
of activity and periods of silence 1, 2. These stochastic changes in gene activity can be jointly 
regulated across chromosomes through various mechanisms. Understanding the underlying 
mechanisms is crucial for deciphering how cells orchestrate rapid, precise, and coordinated 
responses to environmental stimuli, particularly those induced by inflammatory cytokines, 
where the timing and magnitude of gene expression are critical for cell viability.  

Several models suggest that long-range interactions between cis-regulatory elements (CREs) 
such as promoters or enhancers 3, 4 play a crucial role in the clustering of RNA polymerase II 
(RNAP II) into transcription factories 5 or active chromatin hubs 6. The associated genome 
topology has been mapped by sequencing-based in situ cross-linking methods like Hi-C, 
which have identified topologically associating domains (TADs) as central structural units on 
the 0.1-1 MB scale 7-12. While these structural models provide insights into the spatial genome 
organization of transcriptional regulation, recent studies employing fluorescence microscopy 
and in vitro experiments have shifted the focus to the dynamic behavior and interactions of 
proteins involved in gene expression. These studies propose that phase separation of proteins 
and RNA drives the assembly of transcription factors (TFs), co-regulators, and the RNAP II 
machinery into protein assemblies termed “transcriptional condensates”, which accumulate at 
CREs and drive the transcriptional activity of multiple genes 13-17. Furthermore, single particle 
tracking experiments show that the chromatin microenvironment can confine TFs to specific 
regions of the nucleus, causing them to become locally enriched, pointing to the existence of 
“TF hubs” 18-20.  

The above models are not mutually exclusive and may represent different aspects or scales 
of the same underlying regulatory mechanisms. However, a comprehensive, genome-wide 
analysis is still lacking that would provide a better understanding of how features from the 
various models could jointly contribute to direct gene expression programs. In particular, it 
remains unclear how different regulatory mechanisms, such as enhancer-promoter 
interactions, transcription factor dynamics, and local chromatin environments, work together 
to form “chromatin modules” as the functional units that direct complex transcriptional 
responses 12, 21, 22. Moreover, the relationship between different regulatory mechanisms and 
the observed patterns of transcriptional bursting is not well understood at a genome-wide 
level. Here, we employ a set of complementary single-cell sequencing readouts and 
fluorescence-based imaging to derive an integrated view of chromatin modules that drive the 
co-regulated induction of genes. We study the transcriptional response to tumor necrosis 
factor alpha (TNFα) treatment of human umbilical vein endothelial cells (HUVECs). The 
activation of the transcription factor NF-κB by TNFα induces a proinflammatory gene 
expression program, which represents a prototypical system for dissecting the linkage 
between gene regulation mechanisms and genome organization 23-25. We demonstrate how 
gene induction involves the co-regulation of genomically clustered genes, driven by two types 
of non-mutually exclusive chromatin modules: the “autonomous link of co-accessibility” (AC), 
which reflect a long-range interaction between separated CREs, and the “domain of 
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contiguous co-accessibility” (DC), defined as a region of chromatin sites with increased local 
transcription factor activity rendered simultaneously accessible. Changes in transcriptional 
bursting kinetics upon TNFα treatment varied between genes in the AC versus DC modules, 
pointing to their functionally distinct regulatory mechanisms. 

 

Results 
Transcription co-regulation was studied in HUVECs treated with TNFα for 0, 30, and 240 
minutes, representing the uninduced, immediate-early, and later phases of the response. We 
performed single-cell/nuclei transcriptome analyses (scRNA-seq/snRNA-seq) and mapped 
open chromatin loci with the assay for transposase-accessible chromatin in nuclei (snATAC-
seq) together with a multi-color single molecule FISH analysis of nascent transcripts. The 
single cell/nuclei analysis was complemented with bulk H3K27ac ChIP-seq data and the 
reanalysis of previously acquired 3’ bulk poly-A RNA-seq 26, 27 and Hi-C-seq data 28 (Fig. 1A). 
The 5’ scRNA-seq and snATAC-seq experiments were conducted in three independent 
triplicates at all three time points using our “TurboATAC” protocol for deep coverage of open 
chromatin sites 29. Cell cycle states were annotated to select cells in the G1 phase (Fig. S1A-
C). This yielded homogeneous cell populations for each time point, which were used for all 
subsequent analyses and are visualized via UMAP embedding in Fig. 1B. 

 

TNFα regulates ~1,500 genes via NF-κB and IRF family TFs 
Differential gene expression analysis was conducted using pseudo-bulks of scRNA-seq 
replicates for the 0-30 and 0-240 min time point comparisons (Fig. 1C). We identified 1,499 
differentially expressed genes that are referred to as TRGs for TNFα-regulated genes 
(Supplementary Dataset S2). This gene set included a significant fraction of down-regulated 
genes, which aligns with the observation that NF-κB, together with other TFs activated by 
TNFα, can act as an activator and a repressor, both directly and indirectly 30, 31. Our 5’ scRNA-
seq data captured transcripts lacking poly(A) tails, identifying additional long non-coding RNAs 
(lncRNAs) as TRGs (~30%). The heatmap of TRG expression across treatment conditions 
and biological replicates showed varying patterns of differential expression that distinguish 
between early and late (secondary) response kinetics (Fig. S1D). The expression analysis of 
3’ bulk RNA-seq data identified fewer differentially expressed lncRNAs (3%) but confirmed 
differential expression of ~70% of protein-coding TRGs (Fig. S1E, F). This comprehensive 
analysis reveals that TNFα regulates ~1,500 genes, including a significant fraction of lncRNAs, 
highlighting its broad and complex impact on the inflammatory response. 
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Fig. 1. TNFα induced differences in gene expression and chromatin accessibility. (A) Changes in 
gene expression upon TNFα treatment were dissected in HUVECs with a complementary set of single 
cell and bulk sequencing readouts together with fluorescence microscopy of nascent RNAs and NF-κB. 
(B) UMAP embeddings of scRNA-seq (left) and snATAC-seq data (right) at 0 min (black), 30 min (light 
blue), and 240 min (dark blue) after TNFα induction. G1 cells from three biological replicates were 
selected to minimize the confounding effects of the cell cycle. (C) Gene expression changes upon TNFα 
induction across three biological replicates. Genes with log2 fold change (log2FC) ≥ 1 (up-regulated, 
red) and log2FC ≤ -1 (down-regulated, blue) and adjusted p-value < 0.05 were selected as TNFα 
regulated genes (TRGs). (D) Accessibility changes at ATAC peaks upon TNFα induction across three 
biological replicates. Peaks with differential accessibility of log2FC ≥ 1 (up-regulated, red) or log2FC ≤ 
-1 (down-regulated, blue) and adjusted p-value < 0.05 were used for further analysis. (E) Differential 
TF binding in ATAC peaks after TNFα treatment of HUVECs across three biological replicates. The 
dashed line separates TFs with binding log2FC <0.1, and the top 10 differential TFs are annotated. 



 5 

TNFα treatment induces the opening of NF-κB binding sites  
Our snATAC-seq data analysis identified 201,329 chromatin accessibility peaks from a 
pseudo-bulk analysis that were located at promoters (9%), within gene bodies (61%), and in 
intergenic regions (30%) (Fig. S1G). At the single cell level, ~150,000 unique fragments/cell 
were mapped, covering ~50,000 peaks/cell with FRiP scores of ~0.6 (Supplementary 
Dataset S1, Fig. S1H). Thus, our data provide deep open chromatin profiles of single cells, 
considering that only a fraction of the ~200 thousand peaks from the aggregated data are 
simultaneously open in the same cell. The minus-average (MA) plots of differentially 
accessible peaks between 0-30 min and 0-240 min TNFα time points (Fig. 1D) revealed a 
relatively small fraction of 2-3% peaks with differential accessibility (3,826 peaks after 30 min; 
5,803 peaks after 240 min). Of these, only 2% were at promoters, pointing to the importance 
of CREs located at intronic (~55%) or intergenic sites (~35%) (Fig. S1G). While 91% of all 
TRGs had an open chromatin site at the promoter, only 9% of these showed significant 
changes in promoter accessibility upon TNFα treatment (Fig. S2A). Pseudo-bulk analysis of 
differential TF binding revealed that NF-κB family motifs were strongly induced after 30 min of 
TNFα stimulation (Fig. 1E). In addition to NF-κB family motifs, after 240 min bona fide 
secondary targets of TNFα were induced, including IRF family, ATF4 (AP1), CEBP/CHOP and 
PRDM1 as the central motifs, consistent with previous studies on NF-κB crosstalk with other 
TFs 32. These findings demonstrate that TNFα induces targeted changes in chromatin 
accessibility, primarily at intronic and intergenic NF-κB binding sites, with only 2% of changes 
occurring at promoters, underscoring the critical role of distal regulatory elements in the 
inflammatory response. 

 

TRGs cluster in the genome and are co-induced 
TRGs clustered along HUVEC chromosomes, which we visualized in a TRG network graph 
with proximal TRGs linked by edges (Fig. 2A). The number of TRG clusters varied with 
different distance thresholds to define local neighbors (Fig. S2B). At the 500 kb cutoff selected 
for further analysis, this resulted in 67% (1,008) TRGs in 356 clusters (Supplementary 
Dataset S3), while 33% (491) of TRGs were isolated. This number of TRG clusters exceeded 
the number expected for genomic clustering of randomly sampled genes (Fig. S2C). The TRG 
cluster average size was 460 kb, with most occupying less than 1 Mb (Fig. S2D). A cluster 
contained 2.8±1.3 TRGs on average, with a maximum of 9 TRGs (Fig. S2D). Most TRG 
clusters (69%) were located within a single TAD (Fig. S2E).  

The density curves of co-expression from scRNA-seq revealed low co-expression of clustered 
and isolated TRGs in the absence of TNFα treatment (Fig. 2B). Upon TNFα stimulation, co-
expression strongly increased within TRG clusters but not between isolated TRGs (Figs 2B, 
S2F). This finding was corroborated by a multiplexed single molecule FISH (smFISH) analysis 
using intronic padlock probes, termed padFISH, to detect nascent RNAs of the CXCL gene 
cluster 33 as an exemplary case for TNFα-induced gene co-expression (Figs 2C, S2G, 
Supplementary Table S1).  
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Fig. 2. Genomic clustering and co-expression of TRGs. (A) Genomic clusters of TRGs below 500 kb 
distance. Each data point represents one TRG, with edges drawn to its neighbors. TRG color and shape 
indicate the direction and time point of differential expression. Shape and color are indicated for TRGs 
at both time points based on the 30 min results. Clusters of proximal TRGs are marked in grey. (B) Co-
expression (replicate average) of clustered (top) and isolated (bottom) TRGs at the 0 min, 30 min, and 
240 min time points. (C) padFISH images of intronic probes detecting nascent RNA from CXCL1 (cyan), 
CXCL2 (yellow), CXCL3 (blue), and CXCL8 (magenta) at 30 min and 240 min time points. Two 
exemplary cells are shown with a zoom-in of co-localized expression loci that appear in white color in 
the merged image. (D)  CXCL co-expression patterns at 30- and 240-minute time points from padFISH 
and scRNA-seq. Error bars display standard errors from triplicates. 
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Both methods identified the same combination of genes in the CXCL cluster being co-
expressed, namely either CXCL1/2/3/8, CXCL1/2/3, or CXCL1/2/8. In contrast, combinations 
that included CXCL3 and CXCL8 but not CXCL2 were hardly ever detected (Fig. 2D). Our 
scRNA-seq and padFISH co-expression results were highly correlated (Spearman correlation 
coefficients of 0.83 at 30 min, and 0.79 at 240 min) (Fig. S2H). The genomic clustering (67% 
of TRGs in 356 clusters) and induced co-expression of TRGs upon TNFα stimulation suggest 
that spatial proximity and additional factors play a crucial role in facilitating coordinated gene 
regulation during inflammation. 

 

Co-accessibility analysis with RWireX reveals long-range features of gene regulation 
Most TRGs displayed no differential chromatin accessibility at their promoters (Fig. S1G, 
S2A), suggesting that distal CREs are essential for the TNFα-regulated expression program. 
To gain further insight into the underlying mechanisms, we exploited the deep coverage of our 
snATAC-seq data. We developed the RWireX software package to map sites simultaneously 
accessible in the same cell as a proxy for regulatory interactions (Fig. 3A, Supplementary 
methods). A co-accessibility analysis with RWireX was conducted using two different 
workflows. The “single cell co-accessibility” workflow uses a homogeneous population of cells 
as input to identify co-accessible sites from stochastic accessibility changes between single 
cells. RWireX identified co-accessible links between high-resolution ATAC peaks by 
computing their correlation coefficients and percent accessible cells against a background 
model from shuffled input matrices.  

Additionally, we computed link activity scores for each cell, assessing whether both interacting 
peaks were detected as “open”. In contrast, the “metacell co-accessibility” workflow uses 
aggregated profiles of 10 cells with similar chromatin accessibility profiles to compute 
correlation coefficients between genomic tiles at a lower genomic resolution. For this, we 
analyzed heterogeneous cell populations with respect to a given perturbation, such as the 
duration of TNFα treatment. This approach allowed the identification of contiguous domains 
of co-accessibility enrichment in the genome driven by TNFα treatment, while any stochastic 
changes present in individual cells are no longer resolved. In this manner, the RWireX analysis 
uncovers both long-range regulatory interactions and larger regions of locally increased 
accessibility to dissect the chromatin-level mechanisms coordinating the TNFα-induced 
transcriptional response. 
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Fig. 3. Co-accessibility analysis with RWireX. (A) RWireX computes co-accessibility from snATAC-
seq data with two different workflows. Left: The single-cell co-accessibility is calculated between peaks. 
The grey levels visualize the magnitude of the corresponding correlation between two peaks. The height 
of the arcs indicates the percentage of cells in which at least one of the linked peaks is accessible. 
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Right: The metacell co-accessibility is computed with aggregated cells in 10 kb genomic bins to identify 
domains with increased co-accessibility. (B) Single-cell co-accessibility at the KLF10/GASAL1 TRG 
cluster. Top: pseudo-bulk chromatin accessibility. Middle: pseudo-bulk ATAC peaks extended to 1 kb 
(black), H3K27ac peaks from ChIP-seq at 30 min time point (green), genes (grey), TRGs (blue), and 1 
kb regions around their TSSs (light blue). Bottom: consensus autonomous links of co-accessibility (ACs) 
at TRG promoters visualized as described in panel A. (C) Replicates of ACs at ten most differential 
TRGs after 30 min of TNFα stimulation. The size and color of the dots show the total number of ACs 
detected in the reference sample and the percent overlap between the samples. (D) Number of 
consensus ACs at TRGs and their genomic location for TNFα time points. (E) Percent accessible cells 
at start and end peaks of ACs for the three different time points. (F) Chromatin contact map from HiC-
seq data of unstimulated HUVECs. A region of 1.2 Mb around the KLF10/GASAL1 TRG cluster is shown 
with the upper color scale limit set to 100.  
 
TRG promoters and enhancers are frequently co-accessible in single cells 
Single-cell co-accessibility analysis with RWireX was performed to detect long-range 
interactions between genomic loci. For example, a 160 kb region around the TRGs KLF10 
(log2FC30 min = 3.04, log2FC240 min not significant) and GASAL1 (log2FC30 min = 1.3, log2FC240 

min not significant) is shown in Fig. 3B. The two genes showed a co-accessible link between 
their promoters already before stimulation, which was present in almost all cells. This frequent 
co-accessible link increased markedly in strength after 30 min of TNFα treatment, and 
additional links to a potential intergenic enhancer, marked by H3K27ac enrichment, appeared. 
After 240 min of TNFα treatment, these links mostly disappeared, or their strengths again 
dropped, coinciding with the return of KLF10 and GASAL1 to basal expression levels.  

The overlap of co-accessible links between replicates was high at TRGs (75%), but less so 
genome-wide (10%) (Figs 3C, S3A, S3B). Accordingly, we used links present in at least two 
replicates to compile consensus lists of autonomous links of co-accessibility (ACs) at each 
treatment time point for further analysis (Fig. S3C, Supplementary Dataset S4). We 
observed 12% of ACs at TRGs (10.8% at 0 min, 13.6% at 30 min, and 11.6% at 240 min; Fig. 
S3D), of which 45% were at the respective promoters, 36% within introns, and 19% in exons 
(Fig. 3D). The fraction of ACs between TRGs and distal H3K27ac sites was significantly higher 
(40%) than for non-TRG links (35%) (Chi-squared test p-value = 2.8e-11; Fig. S3E). The 
frequency at which ACs were detected in single cells displayed a well-separated bimodal 
distribution (Fig. 3E). A fraction of ACs was present in almost all cells, likely representing pre-
established architectural interactions. In contrast, others showed a rare and more stochastic 
occurrence as they were detected in only a fraction of cells. Interestingly, the number of rare 
ACs remained constant throughout the treatment time course, while the number of frequent 
ACs decreased with ongoing TNFα treatment. 

We then assessed the location of ACs in relation to TADs. While ACs were mainly located 
within the same TAD (45-52%), a significant fraction also extended across TAD boundaries 
(26-33%) or was found outside of TADs (23%) (Fig. S3F). Interestingly, the KLF10 and 
GASAL1 TRGs were located at the very boundaries of the same TAD (Fig. 3F). Finally, we 
investigated whether the presence of ACs correlated with gene expression by exploiting 
snMultiome-seq data (RNA and ATAC from the same nucleus), which were sparser than our 
separately acquired scRNA/snATAC-seq data. We computed Spearman correlation 
coefficients between TRG expression and their promoter’s link activities, as given by the 
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multiplied accessibility of the two linked ATAC peaks (Fig. S3G). In general, the correlation 
between link activity and TRG expression was low. Nevertheless, the distribution displayed 
an extended right tail containing specific ACs that were correlated with TRG expression. 
Examples of links highly correlated with gene expression are shown for the key TRGs JAG2, 
IER2 and IRF1 (Fig. S3H). These findings, enabled by our novel RWireX approach for 
scATAC-seq analysis, reveal a complex landscape of promoter-enhancer interactions 
featuring both pre-established architectural links and more dynamic, stochastic connections. 

 

 
Fig. 4. Co-accessibility analysis with RWireX using metacells. (A) Metacell co-accessibility (top) 
and chromatin contacts (bottom) at the TRG cluster of TNFΑIP3, IFNGR1 and WAKMAR2. The metacell 
co-accessibility was computed across all time points, while the Hi-C data are from unstimulated 
HUVECs. The annotation in the middle shows DCs (black), H3K27ac peaks from ChIP-seq at 30 min 
time point (green), genes (grey), TRGs (blue) and 1 kb regions around their TSSs (light blue). (B) 
Genomic sizes of DCs and TADs. (C) Genomic location of DCs in relation to TADs. DCs were classified 
as within one TAD, across TAD boundary, and without TAD overlap. 
 
Metacell co-accessibility reveals domains of increased transcription factor activity 
Next, we applied the RWireX metacell co-accessibility analysis and observed domains of 
contiguous co-accessibility (DCs) across the TNFα treatment time points. An example of a DC 
at the TRG cluster of TNFAIP3, IFNGR1, and lncRNA WAKMAR2 is shown in Fig. 4A, referred 
to as the TNFAIP3 DC in the following. All of these TRGs were significantly upregulated in 
response to TNFα (TNFAIP3 log2FC30 min = 5.9, log2FC240 min = 4.8; IFNGR1 log2FC30 min not 
significant, log2FC240 min = 1.4; WAKMAR2 log2FC30 min = 2.1, log2FC240 min = 2.7) (Fig. 4A). 
Notably, TRG promoters in this cluster were devoid of ACs. Genome-wide, DCs were 
identified by repurposing the Hi-C TAD-calling tool SpectralTAD, which retrieved 4,885 
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domains based on the replicate consensus metacell co-accessibility (Supplementary 
Dataset S5). 

The reproducibility of DC mapping in our replicate data was high, as illustrated by separate 
co-accessibility maps of each replicate in the exemplary region (Fig. S4A) and by >60% 
overlap between DCs from the individual replicates and the consensus (Fig. S4B). The size 
distributions of DCs and TADs indicated that DCs are TAD sub-structures (Fig. 4B). However, 
an analysis of the genomic location of DCs and TADs demonstrated that about 1/3 of DCs 
either overlapped with TAD boundaries or were located outside of TADs (Fig. 4C). Almost all 
DCs (95%) identified with RWireX showed significant accessibility changes upon TNFα 
treatment. The majority became less accessible upon TNFα treatment (74% at 30 min; 70% 
at 240 min), while only 26% (30 min) and 30% (240 min) showed increased accessibility in 
response to TNFα (Fig. S4C). However, this trend differed for the 683 DCs containing at least 
one TRG promoter. Three quarters of these displayed increased accessibility after 30 and/or 
240 min of TNFα treatment, suggesting that TRG-containing DCs became activated. At the 
same time, the activity of DCs without TRGs was predominantly reduced. We then evaluated 
whether the presence of DCs directly correlated with gene expression in single cells. 
Spearman correlation coefficients between TRG expression and overall DC accessibility were 
computed, revealing a positive relationship between the two parameters (Fig. S4D, S4E). 

Next, we investigated local TF binding activity in DCs using our pseudo-bulk snATAC-seq data 
(Fig. 5A). We computed TF footprints and inferred TF binding activity for the TFs that 
displayed a genome-wide increased binding activity upon TNFα treatment (Fig. 1E) using the 
TOBIAS software 34. We used TF binding activities to infer variations in TF binding in DCs 
against a local and a whole-genome non-DC background. Local enrichment of NF-κB binding 
was apparent when comparing the characteristic footprints of accessible NF-κB/p65 motifs 
within and around the merged TNFAIP3 DC (Fig. 5B). Additionally, NF-κB/p65 binding 
activities of individual motifs in this DC were significantly higher than of the accessible motifs 
in the whole-genome non-DC background (Fig. S5A, B). Furthermore, a locally increased 
activity was observed for IRF family TFs, PRDM1, CEBP, and ATF4 (Figs 5C, S5B). 
Significant local enrichment for at least one differentially bound TF (Fig. 1E) was present in 
44% of the DCs (Fig. 5D). Interestingly, the TNFAIP3 DC showed high NF-κB binding activity 
already at the uninduced state. Immunostaining of NF-κB showed its targeting to the nucleus 
upon TNFα treatment and its assembly into nuclear foci where the protein is locally enriched 
(Fig. S5C). The nuclear concentration of NF-κB and the number of foci increased upon TNFα 
treatment (Fig. S5D). However, some nuclear NF-κB foci were apparent already in the 
uninduced state. This observation aligns with NF-κB footprints at the 0 min time point from our 
sequencing-based analysis (Figs S5E). It suggests that a fraction of NF-κB DCs persists in 
HUVECs without TNFα treatment. These DCs could facilitate a particularly rapid induction of 
TRGs located within them. Thus, identifying DCs as local hubs of increased TF binding activity 
from scATAC-seq data unveils a novel layer in the spatial organization of transcriptional 
regulation during the inflammatory response. 
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Fig. 5. Local enrichment of TF binding activity in DCs. (A) Scheme of the approach to compute local 
TF binding activity in DCs. TF binding activity is inferred from pseudo-bulk footprints for each TF binding 
motifs in ATAC peaks. TF binding activity in DCs is compared to a local and whole-genome non-DC 
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background. (B) Accessibility footprints at NF-κB/p65 motifs in the merged TNFAIP3 DC (red) and the 
surrounding non-DC regions of the same size (local background; black). Each line shows the 
accessibility of one biological replicate in unstimulated (top), 30 min (middle), and 240 min (bottom) 
TNFα-simulated HUVECs. (C) Differential TF binding activity in the TNFAIP3 DC vs. the whole-genome 
non-DC background. Color scale limits are set to -2 and 2. (D) Same as panel C showing all DCs with 
significant local enrichment of TF binding activity from meta-analysis of replicates. TFs are grouped by 
family. DCs are clustered by summed family enrichment. The color scale limits are set to 0 and 2.  
 
 
Two distinct chromatin module types regulate TRG clusters  
Based on our RWireX analysis, we annotated all TRGs for their promoters with respect to 
having ACs and/or being in a DC. Subsequent clustering of TRGs distinguished four main 
groups, as visualized in Fig. 6A: DC-driven TRGs, AC-driven TRGs, TRGs with both AC/DC 
features, and TRGs carrying neither AC nor DC features. A comparison of the different 
regulation types showed an enriched DC-type regulation for clustered, upregulated, and early-
response TRGs. In contrast, protein-coding downregulated and late-response TRGs 
displayed a preferred regulation via Acs (Fig. S6A, Supplementary Datasets listed in Table 
S2). The analysis of nascent transcripts detected in purified transcription factories 35 displayed 
no apparent enrichment with respect to the AC or DC annotation. The SAMD4 and EXT1 
genes previously associated with "NF-κB transcription factories" 23 were both in the AC/DC 
category. Next, we annotated TRGs in clusters identified above (Fig. 2A) concerning their 
regulation type as derived from the cluster composition (Fig. 6B).   

An AC- and a DC-score (SAC or SDC) was calculated for each TRG cluster. Based on these 
scores, TRG clusters were annotated as predominantly AC- or DC-driven or involving a 
combination of both (AC/DC) (Fig. S6B). TRGs within the same cluster were enriched for the 
same module type. AC, DC, and AC/DC modules displayed no significant differences in cluster 
size, TRG number, and TRG neighbors (Fig. S6C). A scatter plot of TRG cluster co-expression 
versus the SDC DC-score showed a positive correlation coefficient of 0.19 (Fig. 6C). Thus, 
TRG co-regulation via local TF enrichment increased co-expression. In contrast, a negative 
correlation of -0.18 was observed for TRG cluster co-expression and SAC-values, suggesting 
that AC chromatin modules do not promote gene co-expression. These differences could be 
related to the bimodal distribution of TRG cluster co-expression shown in Fig. S2F and point 
to a functional difference between the two chromatin modules. 

Examples of these different regulatory architectures are given in Figs 3B (AC) and 4A (DC). 
In addition, a 150 kb region around the late-responsive TRGs ZC3H7B (log2FC240 min = 2.2), 
RANGAP1 (log2FC240 min = 1.7), and TEF (log2FC240 min = 1.4) is shown in Figs 6D and 6E, as 
an example for an AC/DC chromatin module. Interestingly, the ACs present at 0 and 30 min 
were lost after 240 min of TNFα treatment (Fig. 6D), suggesting that they could be associated 
with a repressive chromatin state. At the same time, a DC comprising the TRG promoters 
overlapped with a region of increased Hi-C contacts lacking clear boundaries (Fig. 6E). Thus, 
our analysis distinguishes the AC and DC type of regulatory chromatin modules in TRG 
clusters that can also co-exist at the same cluster (AC/DC). These findings provide a novel 
mechanistic framework for understanding how cells achieve rapid and precise gene 
expression control. 
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Fig. 6. Chromatin modules at TRG clusters. (A) Clustering of TRGs into AC-, DC- and AC/DC-driven 
genes. The TRG annotation includes differential expression after 30 and 240 min of TNFα treatment, 
location (isolated/clustered), gene type (protein-coding/lncRNA), and detection of transcripts in purified 
transcription factories (factory). (B) TRG cluster types. Colors indicate the type of each TRG and the 
prevalent module type in the cluster. Top: network graph with each datapoint representing one TRG 
and edges to their local neighbors below 500 kb distance. Bottom: Composition of TRG clusters 
assigned to AC, DC, AC/DC, or NA (not assigned) chromatin modules. Each column represents one 
TRG cluster. (C) Co-expression in TRG clusters (replicate average) in dependence of their AC or DC 
scores (SAC, top; SDC, bottom). Colors reflect the density of TRG clusters. (D) Single-cell co-accessibility 
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at the TRG cluster with ZC3H7B, RANGAP1, and TEF. Top: pseudo-bulk chromatin accessibility. 
Middle: pseudo-bulk ATAC peaks extended to 1 kb (black), H3K27ac peaks from ChIP-seq at 30 min 
time point (green), genes (grey), TRGs (blue), and 1 kb regions around their TSSs (light blue). Bottom: 
consensus ACs at TRG promoters. (E) Metacell co-accessibility (top) and chromatin contacts (bottom) 
at the TRG cluster with ZC3H7B, RANGAP1, and TEF. The metacell co-accessibility was computed 
across all time points, while the Hi-C data are from unstimulated HUVECs. The annotation in the middle 
shows DCs (black), genes (grey), TRGs (blue), and 1 kb regions around their TSSs (light blue). 
 
AC and DC modules correlate with distinct 3D chromatin organization features 
Next, we investigated the relation of ACs and Hi-C contacts in further detail. We computed the 
density curves of all Hi-C contacts and Hi-C contacts at ACs (Fig. 7A). This revealed a bimodal 
distribution with a fraction of ACs that had Hi-C contact frequencies ~50 times than the 
genome-wide average. These sites corresponded to ACs within TADs or not within TADs. At 
the same time, Hi-C contact frequencies were largely reduced for ACs across TAD boundaries 
(Fig. 7B). Additionally, we investigated Hi-C contacts at TADs and the DC location. In 
aggregate peak analysis plots 28, Hi-C contacts of scaled TADs were averaged to compare 
TADs with DCs within and across their boundaries (Fig. 7C) and all TADs without DCs (Fig. 
S7A). In this analysis, TAD boundaries appeared weaker when overlapping with DCs, and 
increased interactions with neighboring TADs were observed. 

A metacell co-accessibility map of the GBP TRG cluster displayed lines of anti-correlated 
accessibility (blue color) with high co-accessibility at their junctions (Fig. 7D). These ‘blue 
borders’ often originated from genomic loci with gene promoters in the proximity of TAD 
boundaries. They coincided with stripes of increased chromatin interactions in Hi-C data. 
Zooming into a smaller region of this metacell co-accessibility map with annotated H3K27ac 
and ACs in the GBP cluster (Fig. 7E) showed that the blue borders represent distinct ACs 
between sites enriched for H3K27ac that were present in nearly 100% of cells. As an additional 
example, H3K27ac peaks and gene promoters were also located at the origins of such blue 
borders in the metacell co-accessibility map for the KLF4 TRG locus (Fig. S7B, S7C). Again, 
the blue borders coincided with ACs present in nearly 100% of cells, and Hi-C contact maps 
further confirmed their coincidence with stripes of increased chromatin interactions. These 
findings suggest that the blue borders are linked to the frequently occurring and potentially 
architectural ACs described above (Fig. 3E) and might represent a subset of AC chromatin 
modules (GBP1/3/4 are AC; GBP2 is NA; KLF4 is AC). To assess their spatial chromatin 
interactions, aggregate peak analysis plots of Hi-C contacts at AC interactions were scaled 
and averaged to compare Hi-C contacts at rare and frequent ACs (Fig. 7F). Rare ACs showed 
uniform Hi-C contacts in their entire vicinity while frequently occurring ACs showed distinct 
enrichment of Hi-C contacts between the linked sites. Overall, such blue borders could reflect 
stacking of loops/TAD boundaries 36, 37, but their specific underlying spatial relations that lead 
to the distinct co-accessibility pattern observed here cannot be inferred from this data. These 
observations reveal distinct relationships between ACs, DCs, and Hi-C chromatin contacts 
that provide insights into how different gene regulatory modules may leverage 3D genome 
organization: A fraction of ACs located in TADs displayed a largely increased Hi-C contact 
frequency, DCs spanning two TADs are associated with weakened TAD boundaries, and 
frequently occurring ACs correlate with an increase in Hi-C contacts between the linked sites. 
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Fig. 7. Hi-C chromatin contacts in unstimulated HUVECs at AC and DC chromatin modules. 
(A) Chromatin contacts genome-wide (black) and between AC-linked peaks (red). (B) Chromatin 
contacts between AC-linked peaks within TADs, across TAD boundaries, and outside TADs. P-values 
< 2.22e-16 from Wilcoxon test are indicated by ****. (C) Chromatin contact pileups of TADs with DCs 
within (top) and across TAD boundaries (bottom). (D) Metacell co-accessibility (top) and chromatin 
contacts (bottom) at the GBP TRG cluster. TRGs are annotated in blue. (E) Zoom in on the GBP cluster 
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(central region from panel D) with metacell co-accessibility (top) and single-cell co-accessibility 
(bottom). The annotation in the middle shows pseudo-bulk ATAC peaks (black, extended to 1 kb), 
H3K27ac peaks from ChIP-seq after 30 min TNFα treatment (green), genes (grey), TRGs (blue), and 1 
kb regions around their TSSs (light blue). (F) Chromatin contact pileups of frequent (top) and rare 
(bottom) ACs. 
 
 
AC and DC chromatin modules differ in transcriptional bursting response to TNFα 
Last, we tested whether the location of a TRG in AC, DC or AC/DC chromatin modules was 
related to its bursting kinetics. A two-state model of transcriptional bursting was applied that 
yielded the burst frequency rate kon and the burst size from the ksyn/koff ratio according to the 
mechanism depicted in Fig. 8A. These parameters were first computed for each time point 
from intronic snRNA-seq reads. Scatter plots and density distributions of bursting kinetics 
revealed higher burst frequencies of TRGs in AC and AC/DC chromatin modules than TRGs 
in DC chromatin modules at all time points (Figs 8A, S8A). In contrast, the burst sizes in DC 
and AC/DC modules were higher than in AC modules after 30 and 240 min of TNFα treatment 
(Figs 8A, S8A). In line with these differences, the log2FC values of each TRG after 30 or 240 
min of TNFα treatment showed a predominant regulation of DC TRGs by burst size (Fig. S8B). 

We then compared the bursting kinetics of exemplary TRGs NFKBIA, SELE, and BIRC2 
derived from the snRNA-seq data to those inferred from single molecule FISH implemented 
via our padFISH protocol. Both methods yielded essentially the same results. NFKBIA showed 
low variation in burst size but a substantial increase in frequency across time points (Fig. S8C, 
S8D); SELE displayed an increase in burst size in padFISH and snRNA-seq, while burst 
frequencies remained stable (Fig. S8E, S8F); BIRC2 showed an increase in burst size after 
30 min in padFISH and after 30 and 240 min in snRNA-seq, but displayed hardly any changes 
in burst frequency (Fig. S8G, S8H). Thus, the padFISH analysis of NFKBIA, SELE, and BIRC2 
validates the approach of retrieving burst frequency and size from snRNA-seq data. We 
conclude that AC and DC modules employ functionally different transcription induction 
mechanisms, with ACs primarily affecting burst frequency and DCs influencing burst size.  

 

The AC/DC analysis is applicable to other cellular systems and perturbances 
The approach introduced here to distinguish transcription regulation via AC and/or DC 
chromatin modules is generally applicable to snATAC-seq data with sufficiently deep coverage 
as illustrated in Fig. S9 for three examples from different cellular systems using data from refs 
38, 39. First, a DC identified at an interferon-induced gene cluster in mouse embryonic stem 
cells is shown, which contains the Irf9, Psme1, and Psme2 genes (Fig. S9A). Second, the 
Rnf213 gene induced by IFNb stimulation and located in a DC in epithelial-like mouse 
embryonic fibroblasts is depicted (Fig. S9B). Third, a DC at the Gimap6 gene (Fig. S9C), as 
well as frequently occurring ACs at the Slc11a1 gene (Fig. S9D), were identified in a TCL1 
mouse model upon Tbx21 knockout leading to the loss of the T-bet transcription factor. These 
findings demonstrate that AC and DC modules can also be distinguished in other cellular 
systems that have different perturbances of their gene expression program. 
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Fig. 8. Functional differences in transcriptional burst kinetics of AC and DC modules. 
(A) Transcriptional bursting analysis according to the depicted model. TRG burst frequency and burst 
size (both log10 with pseudo-count of 1) at 0 min (top), 30 min (bottom left), and 240 min (bottom right) 
of TNFα treatment are shown. The colors in the scatter and density plots reflect the TRG’s chromatin 
module type. NFKBIA, SELE, and BIRC2 are highlighted as exemplary TRGs with further data provided 
in Fig. S8. (B) The AC/DC model of transcription regulation at TRG clusters. ACs are characterized by 
the enrichment of distinct co-accessibility correlations between 1 kb size ATAC peaks over larger 
distances. They occur in a stochastic manner but form two groups with low and high frequency of 
occurrence in cells. AC modules regulate transcription more frequently by an increased burst frequency, 
and TRGs in the same cluster show anti-correlated expression. DCs are domains of contiguous co-
accessibility computed at 10 kb resolution that display an increased TF binding activity. Their presence 
correlates with TRG co-expression via changes in burst size. 
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Discussion 
Previous studies have shown that activation of the NF-κB pathway by TNFα or other cytokines 
is linked to chromatin reorganization underlying gene co-expression 23-25, 33. These changes 
have been associated with assembling discrete "NF-κB factories" as demonstrated using the 
SAMD4A and EXT1 TRGs as a model 23. These represent specialized nuclear sites involving 
long-range interactions between promoters and enhancers, leading to the co-regulation of 
multiple genes 23. Another study reported that p65/RelA, a component of NF-κB, assembles 
into nuclear foci by liquid-liquid phase separation at super-enhancers to activate transcription 
of individual loci 40. Thus, gene activation by NF-κB is an example of possibly different 
mechanisms that have been reported to link genome structure to transcription programs. In 
this study, we conducted a genome-wide analysis to identify chromatin modules involved in 
the TNFα-mediated proinflammatory response, leading us to propose the AC/DC model of 
gene regulation (Fig. 8B). This model distinguishes AC and DC modules, identified via the 
analysis of dense coverage snATAC-seq with the RWireX software. It enables the 
identification of stochastic co-accessibility patterns and contiguous domains, which would not 
be possible with population-averaged data as evident from the highly similar pseudo-bulk 
profiles acquired for the different time points.  

Our findings suggest two co-existing transcription compartment architectures. The AC 
modules are characterized by long-range co-accessibility interactions between promoters and 
enhancers involving multiple sites. Based on their bimodal frequency distribution, ACs with a 
low and a high frequency of occurrence were distinguished (Fig. 3E). The two groups may 
reflect the difference between more dynamic enhancer-promoter contacts that occur in a cell 
type- or state-dependent manner at lower frequency and stable architectural interactions 41-43. 
Interestingly, we detect patterns of anti-correlated metacell co-accessibility boundaries 
demarcated by sites of highly correlated accessibility that coincided with frequent ACs. These 
“blue borders” could relate to the stacking of loops/TAD boundaries 36, 37. We identified DCs 
as regions of locally increased contiguous co-accessibility. These domains could be 
interpreted as the genomic footprint of loci with confined TF mobility 18-20 and/or local TF 
enrichment by phase separation or other mechanisms 16, 17, 44 since they display high TF 
density and cooperative assembly. DCs can be located within TADs but, like ACs, can also 
form across TAD boundaries, suggesting a TAD-independent additional layer of genome 
organization possibly relating to nuclear compartments such as nuclear speckles or the 
nucleolus 45. Consistent with this view, TADs and A/B compartments do not reflect binary 
states but are probabilistic structures 12 where TAD substructures can alternate between the 
A and B compartment 46.	
The AC and DC chromatin modules exhibited several important functional differences. 
Clustered, upregulated, and early-response TRGs were more frequently associated with DCs, 
while protein-coding downregulated and late-response TRGs displayed a preferred AC-type 
regulation (Fig. S6A). Furthermore, ACs and DCs had different transcription bursting 
parameters (Fig. 8A). AC-driven transcription primarily influences burst frequency, likely due 
to chromatin looping-mediated enhancer-promoter interactions that facilitate frequent 
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transcription initiation events 43. Interestingly, AC modules displayed anti-correlated 
expression of clustered TRGs, arguing for switching of a given enhancer between different 
promoters, as opposed to complexes where the same enhancer simultaneously drives two 
genes (Fig. 6C). Conversely, co-expression was higher in DC-type TRG clusters. Here, 
regulation was predominantly mediated by changes in burst size, which can be attributed to 
locally increased transcription factor occupancy at multiple sites within these contiguous 
domains. This conclusion aligns well with the mechanism of transcription bursting proposed 
for a Gal4 TF cluster 47. 

In summary, we demonstrate the co-existence and functional impact of two different chromatin 
module types using TNFα-stimulated HUVECs as a prototypic cellular system. Our AC/DC 
model reconciles observations from sequencing-based studies and fluorescence microscopy 
experiments. ACs align with long-range chromatin interactions detected in sequencing data, 
while DCs correspond to local transcription factor enrichment and align with findings from 
microscopy-based studies. By identifying integrated AC/DC modules, we demonstrate that 
these different regulatory mechanisms can act either separately or coexist and cooperate to 
direct transcriptional responses.	The differences in the bursting kinetics could be particularly 
beneficial for a precise and TRG cluster-specific control of the timing and magnitude of the 
inflammatory gene expression response. By employing the different chromatin modules 
separately or in combination, cells could balance speed, precision, and flexibility in 
transcriptional responses, adapting to diverse physiological demands and environmental 
cues. The approach and RWireX data analysis framework introduced here extend their 
potential applications beyond our specific biological system. This is illustrated for other cellular 
systems and perturbations in human and mouse cell types by the examples given in Fig. S9. 
The application of RWireX to identify DC modules in a mouse model for chronic lymphocytic 
leukemia (Fig. S9 C, D) is particularly noteworthy. In the context of previous findings 39, which 
demonstrate the suppression of malignant B cell proliferation by T-bet (a T-box transcription 
factor), it illustrates how the AC/DC model could also provide new avenues for exploring 
dysregulation in disease states. We conclude that the findings from our genome-wide co-
accessibility analysis reflect general features of eukaryotic transcriptional regulation. 
Accordingly, we anticipate that further applications of the framework introduced here will affirm 
the AC/DC module types in diverse cellular responses while providing insights into the 
underlying regulatory mechanisms that become activated. 
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Methods 
Cell culture and TNFα treatment 
HUVECs from pooled donors (Lonza, cat. #00191027, lot #18TL232828) were cultured in 
endothelial basal medium (EBM-2) with supplements (Lonza, cat. #CC-3162). Low passage 
number cells were seeded in 18-well µ-slides (Ibidi), starved for 20-24 h in EBM + 0.5% FBS 
before treatment, and then induced with 10 ng/mL human TNFα (PeproTech, cat. #300-01A) 
for 0, 30 and 240 min. Cells were then fixed with 4% PFA and stored at 4 °C in PBS (Sigma-
Aldrich). For scRNA-seq and snATAC-seq, the time course was conducted in three 
independent replicates, each starting with different aliquots of HUVEC cells. 

 

Single-cell sequencing data acquisition 
The scRNA-seq libraries were prepared according to the Chromium Next GEM Single Cell 5' 
(dual index) protocol v2 from 10x Genomics (Pleasanton, USA). The snRNA-seq libraries were 
prepared on 384-well plates with the SMART-seq 2.5 protocol as described previously 48. The 
snATAC-seq data were prepared using our improved TurboATAC protocol, which increases 
Tn5 integration efficiency with the Chromium Next GEM Single Cell ATAC kit v2 from 10x 
Genomics (Pleasanton, USA) 29. Simultaneous 5’ RNA and ATAC libraries from the identical 
nuclei were prepared according to the Chromium Single Cell Multiome ATAC and Gene 
Expression protocol v1 from 10x Genomics (Pleasanton, USA). Multiplexed library pools were 
generated at 2-10 nM concentration of each library. They were paired-end sequenced on a 
NovaSeq 6000 system (Illumina, San Diego, USA) using S4 flow cells for scRNA-seq and 
snATAC-seq, S1 flow cells for multiome snRNA-seq and SP flow cells for multiome snATAC-
seq libraries. The snRNA-seq libraries were sequenced paired-end on two flow cell lanes of 
an Illumina NextSeq 550 system (Illumina, San Diego, USA) with 25 and 50 bp read lengths. 
The UMI sequences were provided as the first eight bases of read 1. 

 

Preprocessing and basic analysis of scRNA-seq data 
Processing of scRNA-seq data was conducted with Cell Ranger (10x Genomics, Pleasanton, 
USA) including introns and using the provided human GRCh38-2020-A reference. Further 
processing of data was performed in R with Seurat 49. Cells were filtered using a minimal 
threshold of 100 detected genes, a maximal threshold of 5 percent mitochondrial counts, and 
a minimal threshold of 5,000 UMI counts. Samples were merged, log normalized, and scaled. 
Outliers were removed per sample by filtering out cells with more UMI counts than the mean 
plus twice the standard deviation and outside of plus/minus three times the standard deviation 
of mitochondrial counts. Single cells were embedded in two-dimensional space using PCA 
(PC 1-16) and UMAP. Cell cycle stages of single cells were inferred from the expression of 
cell cycle markers 50. Cells in cell cycle stages G2M and S were removed, and G1 cells were 
embedded in two-dimensional space using PCA (PC 1-20) and UMAP. Differential expression 
analysis between unstimulated and TNFα stimulated HUVECs was performed for pseudo-bulk 
counts of samples using DESeq2 51. Differentially regulated genes (TRGs) were identified 
based on thresholds of absolute log2FCs >1 and adjusted p-values <0.05). The genomic 
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location of TRGs was obtained from Cell Ranger reference arc-GRCh38-2020-A-2.0.0. 
Genomic distances between TRGs were computed using GenomicRanges and gUtils (see 
Supplementary Table S3 for additional references to the software used in our study). TRGs 
below 500 kb distance were considered a TRG cluster. Further information on scRNA-seq 
data is provided in (Supplementary Dataset 1). 

 

Preprocessing and basic analysis of snATAC-seq data 
The snATAC-seq data were demultiplexed and aligned with Cell Ranger ATAC (10x 
Genomics, Pleasanton, USA) using the provided human GRCh38-2020-A-2.0.0 reference. 
Further processing of the data was conducted in R with ArchR 52. Cells were filtered using a 
minimal threshold of 104.5 for the number of unique fragments and a TSS ratio above 7. Cell 
doublets were removed with Amulet in scDblFinder using a 5th percentile cutoff for significant 
q-values. Additionally, outliers were removed by filtering out cells with blacklist ratios above 
the mean plus twice the standard deviation. Single cells were embedded in two-dimensional 
space using an accessibility matrix of 500 bp tiles, Iterative LSI (LSI components 2-14) and 
UMAP. Cell cycle stages were inferred by integrating corresponding samples from scRNA-
seq data using ATAC gene activity scores and constraining the integration per sample. Cells 
in G2M and S phase were removed. Single cells were embedded in two-dimensional space 
using an accessibility matrix of 500 bp tiles, Iterative LSI (LSI components 2-8) and UMAP 
again. Peak calling of pseudo-bulk accessibility data from all samples was conducted with 
MACS2 53 in ArchR (extendSummits = 500; reproducibility = 2). Differential accessibility 
analysis was performed by Wilcoxon test between unstimulated and TNFα stimulated 
HUVECs (maxCells = 6,000; bias = TSS enrichment, log10(nFrags); normBy = nFrags). Peaks 
with differential accessibility of an absolute log2FC above 1 and an FDR below 0.05 were 
considered significant. Further information on snATAC-seq data is provided in 
(Supplementary Dataset 1). For the RWireX plots, pseudo-bulk chromatin accessibility data 
were normalized by the number of unique fragments. 

 

Preprocessing and basic analysis of snRNA-seq data 
Processing of snRNA-seq data was conducted using the nf-core rnaseq pipeline in Nextflow. 
Within the pipeline, UMI-tools were used to extract UMI information from read1 and read2 was 
aligned to the human GRCh38-2020-A reference from Cell Ranger (10x Genomics, 
Pleasanton, USA) using STAR. Salmon was used to quantify UMI counts in exons at gene 
level and UMI counts in introns at transcript level. Further processing of data was conducted 
in R using Seurat 49. Cells were filtered using a minimal threshold of 100 detected exon-
counted genes, a maximal threshold of 5 percent mitochondrial counts, and filtering out cells 
with exonic UMI counts above/below the mean plus/minus thrice the standard deviation per 
sample. Cell cycle S and G2M scores of single cells were inferred from exonic UMI counts of 
marker genes 50 , and cells were assigned to G1 if their S and G2M scores were below the 
sample-specific mean plus standard deviation. Non-G1 cells were removed. Further 
information on snRNA-seq data is provided in Supplementary Dataset 1. 
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Multiplex smFISH with the padFISH protocol 
The analysis of nascent RNAs was conducted with a multiplex smFISH protocol, termed 
padFISH, using intronic padlock probes against their cDNA and rolling circle amplification. It 
combines the hybridization-based in situ sequencing (HybISS) 54 and the single-cell resolution 
in situ hybridization on tissues (SCRINSHOT) methods 55. Data were acquired with DNA DAPI 
staining and detection oligos labeled with Alexa Fluor 488, ATTO 550, Alexa Fluor 647, and 
Alexa Fluor 750. For the co-expression analysis of the CXCL cluster, all four colors were used. 
The padFISH data for BIRC2, NFKBIA and SELE bursting kinetics were acquired with three 
colors (Alexa Fluor 488, ATTO 550 and Alexa Fluor 647). The full padFISH protocol and 
corresponding image analysis details are described in the Supplementary Methods. 

 

Immunofluorescence  
For immunofluorescence (IF), fixed cells were permeabilized in ice-cold 0.2% Triton-X in PBS 
for 5 minutes, then blocked with 10% goat serum (GS) in PBS for 15 minutes. Incubation with 
primary antibody mix (Recombinant Anti-NF-kB p65 antibody [E379], ab32536, LOT 
#GR3275776-15, Abcam) with 10% GS was performed for 1 h. Cells were washed twice with 
0.002% NP-40 detergent solution in PBS for 5 minutes. Next, the secondary antibody mix 
(Goat anti-Rabbit IgG (H+L) labeled with Alexa Fluor 647 (Invitrogen, cat. # A21244, lot 
#2836809) with 10% GS in PBS was added for 30 minutes. After two 5-minute washing steps 
in PBS, cells were incubated with 5 µM DAPI in PBS for 15 minutes and then washed three 
times in PBS. All steps were performed at room temperature. IF samples were stored in PBS 
at 4°C until imaging.  

 
Imaging data acquisition 
Samples were imaged using an Andor Dragonfly 505 spinning disk confocal unit equipped 
with a Nikon Ti2-E inverted microscope and a Plan Apo 60x/1.40 oil objective or a 100x CFI 
SR HP Plan Apochromat Lambda S silicone immersion objective. Multicolor images were 
acquired for DAPI (λex = 405 nm, λem = 445±23 nm), Alexa Fluor 488 (λex = 488 nm, λem = 
521±19 nm), ATTO 550 (λex = 561 nm, λem = 594±21.5 nm), Alexa Fluor 647 (λex = 637 nm, 
λem = 685±23.5 nm) and Alexa Fluor 750 (λex = 730 nm, λem = 809±45 nm). All images were 
recorded in Imaris format at 16-bit depth and with 1024x1024 pixel dimensions (pixel size: 
0.217 μm or 0.1204 µm) using an iXon Ultra 888 EM-CCD camera. Tiles were recorded as z-
stack of 10µm thickness with a step size of 0.4 µm (26 frames) and with 10% overlap. 

 
Image analysis 
For the preprocessing of raw images (Imaris format) and metadata, image stacks were first 
transformed into maximum projected TIF files. Next, a custom script was used to perform 
flatfield correction, chromatic aberration correction, and stitching (via Grid/Collection Stitching 
FIJI plugin). Stitched images were used as input in all subsequent analyses. Nuclei 
segmentation on DAPI images was performed with Cellpose 2 56 using the pre-trained cyto 
model with diameters 150 and 200 for 60x and 100x objectives, respectively. Next, cell nuclei 
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at the image's borders or that displayed overexposure in individual channels were filtered out 
in R before further analysis. Individual channel images and Cellpose nuclear masks were used 
as input in R to quantify image features in regions corresponding to nuclear masks using the 
function quantNuclei. For IF and padFISH transcriptional bursting analysis, we computed the 
sum of fluorescence intensities in each nucleus. Further details are described in the 
Supplementary Methods for the padFISH co-expression analysis at the CXCL cluster. 
Custom scripts for image analysis are available at https://github.com/RippeLab/padFISH. 

 
Co-expression analysis of scRNA-seq and padFISH data 
Co-expression was computed between all isolated TRGs and TRGs of the same TRG cluster 
from scRNA-seq data. Spearman correlation coefficients of TRG UMI counts were calculated 
across single cells per sample. TRGs with expression in less than 10% of cells were removed 
from the analysis for each sample separately. The mean Spearman correlation coefficient from 
replicates was used as a co-expression value between two TRGs. The overall co-expression 
of TRG clusters was computed using mean Spearman correlation coefficients of all TRG 
combinations within. Co-expression patterns in the CXCL TRG cluster were determined for 
each cell from scRNA-seq and PadFISH. In scRNA-seq, TRGs CXCL1, CXCL2, CXCL3, and 
CXCL8 were considered as expressed when showing at least one UMI count in a cell. For 
padFISH, fluorescence intensity thresholds were defined from the minimum of the bimodal 
intensity distribution and adjusted by visual inspection of each channel in a pre-segmented 
region obtained from the co-localization of the 4 TRGs (Supplementary Methods). Fractions 
of cells or subcellular loci with different CXCL co-expression patterns were quantified for each 
sample from scRNA-seq and PadFISH.  

 

Co-accessibility analysis with RWireX 
Single-cell and metacell co-accessibility were computed for replicates of snATAC-seq data 
using RWireX. Details of the co-accessibility analysis with RWireX are described in the 
Supplementary Methods. The resulting AC and DC features at TRGs were annotated using 
GenomicRanges. AC start and end peaks and DCs at TRG promoters, defined as ±500 bp 
around the TSS, were quantified. The number of DCs was binarized, while the number of ACs 
was log10 transformed with a pseudo-count of 1. TRGs were clustered by min-max normalized 
AC and DC features (5 clusters from ward.D clustering) and visualized by heatmap. Clusters 
were termed by the prevalent feature and used to annotate TRGs as AC-, DC- or AC/DC-
driven or not assigned (NA). Next, the AC and DC scores of each TRG cluster were computed 
from the AC/DC annotation of the TRGs in the cluster as 𝑆!" = $∑𝑇𝑅𝐺!" + ∑𝑇𝑅𝐺!"/$"* 𝑛⁄  

and 	𝑆$" = $∑𝑇𝑅𝐺$" +∑𝑇𝑅𝐺!"/$"* 𝑛⁄  with n being the total number of TRGs in the cluster. 
Genomic TRG clusters were then assigned as (i) AC for SAC ≥ 0.5 and SDC < 0.5; (ii) DC for 
SAC < 0.5 and SDC ≥ 0.5, (iii) AC/DC for SAC ≥ 0.5 and SDC ≥ 0.5 and (iv) NA for SAC < 0.5 and 
SDC < 0.5.  

 



 28 

Analysis of TF binding 
The TF binding activity score TFscore was calculated from pseudo-bulk footprints of snATAC-
seq replicates using Tobias in Python 34 with Homer universal motifs from chromVARmotifs in 
1 kb ATAC peaks. Increased TF binding between unstimulated and TNFα stimulated HUVECs 
was determined by log2FC of the number of TF-bound sites (replicate average) with a log2FC 
> 0.1 threshold. Genome-wide and region-specific (local DC or non-DC background) TF 
footprints were visualized per sample using pseudo-bulks of 1,000 cells without normalization 
and a smoothing window of 20 in ArchR. To assess differential TF binding between genomic 
regions, we compared the TFscores in DCs and non-DC regions (global background) for TNFα 
responsive TFs. Differential genomic TF binding was calculated as 𝑙𝑜𝑔2𝐹𝐶𝑇𝐹%&'() =
𝑙𝑜𝑔2(〈𝑇𝐹%&'()%,$"〉) − 𝑙𝑜𝑔2(〈𝑇𝐹%&'()%,+,&-〉) and using a one-sided Wilcoxon test per DC 
comparing the TFscores in the respective DC and the global non-DC background TFscores. 
Results from replicates were combined by meta-analysis with Fisher’s method using poolr and 
averaging of log2FCs. TFs with differential genomic binding p-value below 0.05 and log2FC 
above 1 were considered significantly locally enriched in the respective DC. DCs with 
significant local enrichment of TF binding activity were visualized by heatmap, clustering DCs 
by summed TF family enrichment with ward.D2. 

 
Preprocessing and data analysis of multiome snRNA- and snATAC-seq 
Multiome snRNA- and snATAC-seq data were processed with Cell Ranger ARC (10x 
Genomics, Pleasanton, USA), including introns, using the provided human GRCh38-2020-A 
reference. Further processing of data was conducted in R using Seurat and ArchR. For RNA 
data, high-quality cells were selected using a minimal threshold of 5,000 UMI counts and 
minimal and maximal thresholds of 5 and 40 percent mitochondrial counts. Outliers were 
removed per sample by filtering out cells with UMI counts above the mean plus twice the 
standard deviation. Samples were merged, log normalized, and scaled. Cell cycle stages of 
single cells were inferred from the expression of cell cycle markers 50 , and cells in G2M and 
S were removed. For ATAC data, high-quality cells were selected using minimal thresholds of 
103.5 unique fragments and a TSS enrichment score of 7. Cell doublets were removed using 
Amulet in scDblFinder. Additionally, outliers were removed by filtering out cells with unique 
fragments above 30,000 and blacklist ratios above the mean plus twice the standard deviation. 
A mixed cluster composed of 86 cells from all conditions was excluded. Finally, high-quality 
cells from both ATAC and RNA were selected. Further information on multiome snRNA- and 
snATAC-seq data is provided in (Supplementary Dataset 1). 

Gene expression in high-quality cells was quantified using intronic and exonic UMIs in 
Ensembl annotated genes for the Cell Ranger ARC human GRCh38-2020-A reference. TRG 
expression was correlated to ATAC features (ACs and DCs) using Spearman correlation from 
SciPy in Python. For ACs, chromatin accessibility in high-quality cells was quantified using 
insertions in peaks from snATAC-seq data. Accessibility counts of each link's start and end 
peaks were multiplied to obtain AC activities per cell. TRG expression was correlated to the 
activity of ACs at the TRG’s promoters. For DCs, chromatin accessibility in high-quality cells 
was quantified using insertions within the whole domains. TRG expression was correlated to 
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the accessibility of DCs comprising the TRG promoter. For exemplary regions, TRG 
expression and chromatin accessibility were visualized using a heat map. Accessibility was 
quantified within 2 kb bins of the region. Cells were hierarchically clustered by TRG expression 
using SciPy with Euclidean distances and average linkage. 

 
Transcriptional burst kinetics from snRNA-seq and padFISH data 
A two-state model of transcription was applied that yielded the burst frequency rate kon and 
the burst size from the ratio of ksyn/koff according to the mechanism depicted in Fig. 8A 57. To 
compute these parameters, we used intronic UMI counts of TRG transcripts from snRNA-seq 
data at single-cell resolution according to the equation. Only TRG transcripts with intronic UMI 
counts in at least 5% of cells across all treatment conditions and showing the same direction 
of TNFα regulation as gene-level TRGs in the scRNA-seq replicate data were used. Capture 
efficiency was estimated from total transcriptome UMIs per sample, assuming 20% of 500,000 
mRNA molecules/cell in the nucleus (0.33 for 0 min; 0.36 for 30 min; 0.21 for 240 min). 
Weighted averages of transcript-level burst sizes and frequencies were calculated per 
treatment condition to obtain TRG-level burst kinetics. 

Transcriptional burst kinetics of NFKBIA, SELE, and BIRC2 were inferred from padFISH data 
in two replicates following the same model. Thresholds for active transcription were 
determined from the minima of bimodal nuclear fluorescent intensity distributions per TRG and 
replicate. Cells with nuclear fluorescent intensities below these thresholds were considered 
not actively transcribing the respective TRG. A transcript detection efficiency of 0.35 was 
estimated for padFISH 58. Average transcript lengths were used per TRG to approximate 
transcription time. For comparison, burst sizes and frequencies were scaled from zero to one 
for snRNA-seq and padFISH, respectively. 

 

Analysis of 3’ RNA, H3K27ac ChIP and Hi-C bulk sequencing data 
The differential expression analysis between unstimulated and TNFα stimulated HUVECs by 
bulk RNA-seq was conducted, reanalyzing the data from ref. 26, 27 on the hg38 reference 
genome using HISAT2 59. Gene counting was performed using HTSeq 60, and TMM 
normalization was carried out to adjust for differences in library sizes across samples. 
Differential expression was analyzed with NOISeq 61 , using five technical replicates for each 
condition. Genes with a differential expression probability ≥ 0.8 were considered significant. 
H3K27ac ChIP-seq with two H3K27ac antibodies (Abcam, ab4729; Diagenode, C15210016) 
was conducted as described previously 27. Sequencing reads were aligned to the hg38 
reference genome using Bowtie2 62 and peak calling was conducted as described previously 
63. Peaks with a FDR ≤0.001 and a peak height ≥20 were selected. GenomicRanges was used 
to compute the overlap of H3K27ac peaks with TRGs, ATAC peaks, and co-accessibility 
features. The contact matrices from the Hi-C-seq data of unstimulated HUVECs were from 
ref. 28. They were converted from hic to cool format using hic2cool and lifted to the hg38 
genome with HiCLift. The final contact matrices were used as input for Arrowhead 28 to call 
TADs at 25 kb resolution. Overlap of TADs with TRG clusters and co-accessibility features 
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was assessed using GenomicRanges. Balanced counts were extracted from cool files using 
cooler with parameters –join -b –balanced 64. Contact counts between AC-linked genomic 
sites were retrieved by mapping ATAC peaks to 10 kb bins of the Hi-C contact matrix using 
GenomicRanges. Contact matrices of exemplary regions at 10 kb resolution were visualized 
as heatmaps using plotgardener in R. Pile-up plots of chromatin contacts at TADs and ACs 
were created with coolpup.py 65. 

 

Data availability 
Extended Datasets 1-6 are listed in Supplementary Table S2 and can be directly downloaded 
with the manuscript. An overview of data at public repositories used in this study is given in 
Supplementary Table S4. It comprises single-cell sequencing and bulk H3K27ac data at 
Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/) under accession 
number GSE273430, Hi-C-seq data from ref. 28 (GEO, GSE63525) and bulk RNA-seq data 
from ref. 26, 27 at the NCBI Sequence Read Archive (SRA, http://www.ncbi.nlm.nih.gov/sra/) 
under accession number SRP066044. The padFISH source images have been deposited at 
the BioImage Archive under accession number S-BIAD1294 (https://www.doi.org/10.6019/S-
BIAD1294). Custom analysis software tools are available on GitHub at 
https://github.com/RippeLab/RWireX (RWireX) and https://github.com/RippeLab/padFISH 
(padFISH). Additional data analysis scripts and datasets can be downloaded from the Zenodo 
repository at https://www.doi.org/10.5281/zendo.13142236 and https://www.doi.org/10.5281/ 
zenodo.13221210. Published data analysis software used in our study is listed in 
Supplementary Table S3.  
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Supplementary Methods 

padFISH multiplex smFISH of nascent RNAs  

The padFISH method integrates two protocols: hybridization-based in situ sequencing (HybISS) 1 
and single-cell resolution in situ hybridization on tissues (SCRINSHOT) 2. In our study, we 
employed this technique to trace nascent RNAs using intronic padlock probes (PLPs) targeting 
their cDNA and to detect their rolling circle amplification (RCA) product.  

Experimental padFISH protocol 
Cells fixed and stored in PBS underwent permeabilization with 0.1 M HCl for 3 minutes at room 
temperature (RT), followed by three 1-minute washes in PBS/Tween 0.05%. Subsequently, the 
cells were exposed to a blocking mix for 30 minutes at RT and washed twice for 1 minute with 
PBS/Tween 0.05%. For PLP hybridization, we applied a solution containing 20% formamide and 
50 nM of each probe, then incubated the slides for 15 minutes at 55 °C followed by 2 hours at 45 
°C. After hybridization, cells underwent three 10-minute washes with 10% formamide in 2x SSC 
at 45 °C, and then three 1-minute washes with PBS/Tween 0.05%. To ligate PLPs, the sample 
was incubated with 0.5 U/ml of SplintR ligase (New England Biolabs) for 15 minutes at 25 °C. 
After ligation, cells were washed twice for 1 minute in PBS/Tween 0.05%. We then performed 
RCA by incubating the sample overnight at 30 °C with NxGen Phi29 DNA polymerase (LGC 
Biosearch Technologies) and an RCA primer (100 nmol DNA oligonucleotide from Integrated DNA 
Technologies (IDT)). After RCA, cells were washed three times for 1 minute in PBS/Tween 0.05% 
and subsequently fixed in 4% PFA for 15 minutes at RT. Following another set of three washing 
steps in PBS/Tween, cells were incubated with 65% formamide in 2x SSC at 30 °C, then 
underwent the usual PBS/Tween washes and an additional washing step in 2x SSC. Bridge probe 
(BP) and detection oligonucleotide (DO) hybridization were performed according to the L-probes 
HybISS Protocol 1. For BP hybridization, we added a solution of 4x SSC, 40% formamide, and 
each barcode at a final concentration of 0.1 mM to the wells and incubated them for 1 hour at RT. 
Excess probes were removed by washing with 2x SSC. DO hybridization using 0.1 mM of each 
barcoded dye was carried out simultaneously with DAPI staining for 1 hour at RT. Excess DOs 
were removed by washing three times with PBS and cells were stored in PBS at 4 °C until 
imaging. 

padFISH probes 
Based on the scRNA-seq analysis, we designed PLPs for padFISH targeting selected TNFα 
regulated genes (TRGs) using a combinatorial approach that combined the SCRINSHOT probe 
design criteria 2 with the bar/detection scheme of the HybISS method 3. The PLPs were designed 
to bind intronic regions of CXCL1, CXCL2, CXCL3, CXCL8, BIRC2, NFKBIA and SELE for 
nascent RNA detection. We determined the number of PLPs per gene through previous tests 
across replicates, using 3 (CXCL3), 4 (CXCL1, CXCL2, CXCL8), 5 (BIRC2) and 7 (NFKBIA, 
SELE) probes. All PLPs, BPs and DOs were obtained from IDT. PLPs were ordered as DNA 
oligonucleotides with 5'-phosphate modification and 20 nmol synthesis scale (200 μM in IDTE 
buffer pH 8.0). BPs were synthesized as 25 nmol DNA oligonucleotides (200 μM in IDTE buffer 
pH 8.0). DOs were acquired as 1 μmol DNA oligonucleotides with 5'-modifications of Alexa Fluor 
488, ATTO 550, Alexa Fluor 647, and Alexa Fluor 750. 
 

Co-expression analysis of nascent RNAs 
For the padFISH co-expression analysis of the CXCL cluster, individual channel images (488 nm, 
651 nm, 637 nm, 730 nm) were used to detect the co-expression locus across the 4 TRGs of 
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interest. Z projection (SUM function) was applied to all channels to identify regions with co-
localization of at least two channels. The Z-projected image was filtered with Gaussian Blur 2.0 
and then used to create a segmentation mask of the co-expression locus in ilastik (segmentation 
workflow: pixel classification). In FIJI, the output image was binarized and filtered (Gaussian blur 
1.5). An intensity threshold (Otsu, 230/255) was established, and co-expression masks were 
saved as regions of interest (ROIs) using the particle analyzer tool (size: 0-Infinity; circularity: 
0.00-1.00). FIJI's Multimeasure function was applied to the pre-selected ROIs to quantify area, 
mean gray value, and center of mass across all channels (including the DAPI channel as input).  
Next, combined ROIs were converted into masks. We then used nuclear masks, co-expression 
masks, and individual channel images corresponding to the target TRGs as input in R to compute 
co-expression. The co-expression masks were assigned to nuclei using our custom 
function quantNuclei 4. For the analysis, only nuclear masks containing a minimum of one and a 
maximum of two co-expression masks were selected. Quantification was performed exclusively 
across the co-expression locus masks. We further filtered out cells from the analysis if the 
subcellular co-expression masks' area and sum of intensities represented outliers from the overall 
population. Minimum fluorescence intensity thresholds for CXCL1, 2, 3, and 8 were defined from 
the minimum bimodal intensity distribution and adjusted based on visual inspection of each 
channel in the co-expression mask. Finally, the expression pattern of target genes was binarized 
(1 for active, 0 for inactive). 
 

Co-accessibility analysis with RWireX 

The co-accessibility analysis was conducted with the RWireX software, which is based on our 
previous work 5, 6 and is available at https://github.com/RippeLab/RWireX. It identifies chromatin 
regions simultaneously open and accessible in the same cells or metacells from snATAC-seq 
data. RWireX is implemented as an extension of the ArchR package 7. It computes Pearson 
correlation coefficients across different cell populations and at varying levels of resolution using 
two distinct workflows, which are illustrated in the scheme below. We employed this approach to 
identify both autonomous links of co-accessibility (ACs) and domains of contiguous co-
accessibility (DCs).  
The "single cell co-accessibility" workflow identifies ACs from stochastic accessibility changes in 
1 kb ATAC peaks. It employs a homogeneous population of single cells as input, e. g., in our case, 
the separate 0 min, 30 min, and 240 min time points of TNFα treatment. Pearson correlation 
coefficients between two peaks are evaluated against a local background model. Background co-
accessibility is calculated from the 99th percentile derived from accessibility matrices per 
chromosome that are shuffled over cells and peaks. The stability of ACs is determined from their 
prevalence in the single-cell population by computing the average percent of accessible cells for 
the linked peaks. 
The "metacell co-accessibility" workflow identifies DCs from accessibility changes in 10 kb 
genomic tiles and utilizes profiles from aggregated cells (metacells) with similar chromatin 
accessibility profiles as input. This workflow requires input from a heterogeneous cell population. 
Therefore, different cell types or states are jointly used, e.g., in our case, the combined 0 min, 30 
min, and 240 min time points of TNFα treatment. This approach enables the identification of 
broader genomic patterns of depleted or enriched co-accessibility along the genomic coordinate, 
driven by heterogeneous cell states at the TNFα treatment time points. The efficacy of the RWireX 
analysis improves with higher snATAC-seq coverage. This parameter was particularly high in the 
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dataset studied here with ~150,000 unique fragments/cell. Based on our experience, snATAC-
seq data with 20,000-30,000 unique fragments/cell are also suitable for analysis with RWireX. 
 

 
 

Single cell co-accessibility 
The co-accessibility analysis with RWireX conducted here utilized 1,000 cells per sample, all in 
the G1 phase of the cell cycle and with similar numbers of unique fragments per cell. Single cell 
co-accessibility was computed from a continuous accessibility matrix of ATAC peaks within 1 Mb. 
Co-accessible links were filtered using sample-specific background co-accessibility cutoffs 
(0.083-0.088), a minimal cutoff of 5% accessible cells, and by retaining only positively correlated 
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links. This process resulted in a set of ACs for each sample. Consensus ACs for each treatment 
condition were obtained by selecting links detected in at least two replicates, and averaging 
Pearson correlation coefficients and percent accessible cells from these replicates. The 
reproducibility of ACs was assessed between replicates by computing the percent of consistent 
links among all links of the samples. TRGs, H3K27ac peaks, and TADs were annotated at the 
start and end peaks of ACs using GenomicRanges 8. 

Metacell co-accessibility 
Metacells were formed from unique sets of 10 cells each, with 10% of cells excluded to prevent 
forced aggregation of dissimilar cells. For each replicate, metacell co-accessibility was computed 
across treatment conditions using a continuous accessibility matrix of 10 kb genomic tiles within 
2 Mb regions. Consensus metacell co-accessibility was obtained by averaging the Pearson 
correlation coefficients of replicates and visualized as heatmaps of co-accessibility matrices using 
plotgardener 9. DCs were determined from positive co-accessibility matrices (consensus and 
individual replicates) using SpectralTAD 10. The algorithm was run with three levels of domain 
hierarchy for small domains (minimal domain size of 20 kb, window size of 200 kb) and large 
domains (minimal domain size of 200 kb, window size of 2 Mb) separately. The average of 
Pearson correlation coefficients within determined the overall co-accessibility of domains. Lower 
cutoffs from 90th co-accessibility percentiles were applied to small and large domains to filter for 
domains of locally enriched co-accessibility. The reproducibility of DCs between replicates was 
assessed by computing the percent of bp overlap between domains using GenomicRanges. 
Differential accessibility analysis of domains was conducted by Wilcoxon test between 
unstimulated and TNFα stimulated HUVECs (maxCells of 6,000; bias correction by TSS 
enrichment, log10(nFrags); normalization by nFrags). Domains with differential accessibility of 
FDR below 0.05 were considered significant. TRGs, ATAC peaks, H3K27ac, and TADs were 
annotated in DCs using GenomicRanges. 

Metacell co-accessibility of mouse data 
For the analysis of co-accessibility in mouse cells under perturbation, we utilized snATAC-seq 
data from mouse embryonic stem cells (ESCs) and embryonic fibroblasts (MEFs) treated with 
IFNβ 6, as well as from TCL1 mouse models upon Tbx21 knock-out 11. Comparable cell numbers 
and numbers of unique fragments per cell were used for ESCs and MEFs (2,700 cells) and wild-
type and Tbx21-knockout TCL1 cells (1,000 cells). Metacell co-accessibility was computed using 
continuous accessibility matrices of 10 kb genomic tiles within 2 Mb regions. Metacells were 
generated from 10 unique cells each, omitting 10% of cells to prevent forced aggregation. Co-
accessibility matrices were visualized as heatmaps using plotgardener. For ESCs and MEFs, we 
annotated interferon-stimulated genes (ISGs) and STAT1/2 bound sites from bulk RNA- and ChIP-
seq data 6. For TCL1 cells, we annotated T-bet-dependent genes from bulk RNA-seq data 11 and 
Tbx21 and NF-κB binding motifs from Homer 12. 
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Supplementary Figures 

 
Supplementary Figure 1. TNFα-induced gene expression and chromatin accessibility. (A) UMAP 
embeddings of scRNA- (top) and snATAC-seq data (bottom) from three biological replicates with coloring 
according to TNFα treatment. (B) Same as panel A with coloring of biological replicates. (C) Same as panel 
A with coloring of cell cycle states. Only cells in G1 cell cycle state were used for subsequent analyses. 
(D) Expression of TNFα regulated genes (TRGs) with log10 transformed and scaled UMI counts. TRGs are 
annotated by gene type and differential regulation after 30 and 240 min of TNFα treatment. (E) Differential 
expression after TNFα treatment in 3’ bulk RNA-seq data. Significant differential expression is defined as 
log2 fold change (log2FC) ≥ 1 (up-regulated, red) or log2FC ≤ -1 (down-regulated, blue) and differential 
expression probability ≥ 0.8. (F) Overlap between TRGs from pseudo-bulks of 5’ scRNA-seq replicates and 
3’ bulk RNA-seq. Only protein-coding TRGs are shown. The circle colors indicate the direction of regulation. 
For TRGs at both time points, 30 min results are considered. (G) Number and location of peaks from 
pseudo-bulk analysis of snATAC-seq. Peaks were classified as promoter, exonic, intronic, and intergenic. 
Left: All 201,329 ATAC peaks.  Right: Differential ATAC peaks after 30 min and 240 min of TNFα treatment. 
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Supplementary Figure 2. Genomic location and co-expression of TRGs. (A) Proximal regulation of 
TRG expression by promoter and/or gene body ATAC peaks. The inner wheel shows the fraction of TRGs 
with ATAC peaks at their promoter, gene body, promoter, and gene body, or none. The outer wheel shows 
the fraction of TRGs with significantly differential ATAC peaks in the previous groups. (B) Number of TRG 
clusters detected in dependence of distance cutoffs to define TRG neighbors. (C) Number of gene clusters 
from 1,499 genes randomly selected 1,000 times with a distance cutoff of 500 kb for local neighbors. This 
yielded about 300 clusters on average. The number of 356 TRG clusters detected at this distance is 
significantly higher and marked by a red line. (D) TRG cluster size over the number of TRGs per cluster. 
The colors of points reflect the density of TRG clusters. Density curves of TRG cluster size and number of 
TRGs are shown. (E) Genomic location of TRG clusters in relation to TADs from Hi-C data of unstimulated 
HUVECs. TRG clusters were classified as all TRGs within the same TAD, majority of TRGs within the same 
TAD, TRGs distributed across TADs, and no TAD overlap of TRGs. (F) Co-expression of clustered (red) 
and isolated (black) TRGs after 30 min (left) and 240 min (right) of TNFα-treatment. Average replicate co-
expression for upregulated TRGs is shown with p-values from a two-sided, unpaired Wilcoxon test. 
Clustered TRGs show significantly higher co-expression than isolated TRGs. (G) padFISH images of 
intronic CXCL1 (cyan), CXCL2 (yellow), CXCL3 (blue), and CXCL8 (magenta) expression after 0, 30 and 
240 min of TNFα treatment. (H) CXCL co-expression patterns from scRNA-seq and padFISH. Error bars 
display standard errors from triplicates. Spearman correlation coefficients are indicated. Co-expression 
results from scRNA-seq and padFISH are highly correlated. 
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Supplementary Figure 3. Single-cell co-accessibility analysis with RWireX. (A) Chromatin accessibility 
and co-accessible links in replicates at the KLF10 and GASAL1 TRG cluster during TNFα induction. Top: 
aggregated pseudo-bulk chromatin accessibility in three biological replicates. Middle: 1 kb extended 
pseudo-bulk ATAC peaks (black), genes (gray), TRGs (blue) and 1 kb regions around the TSSs of TRGs 
(light blue). Bottom: co-accessible links at TRG promoters from single cell co-accessibility of biological 
replicates. The grayscale and height of loops reflect accessibility correlation and percent accessible cells 
of linked peaks. (B) Reproducibility of co-accessible links between replicates. The size and color of the dots 
show the total number of links detected in the reference sample and the percent overlap between the 
samples. Genome-wide co-accessible links show high heterogeneity between biological replicates. 
(C) Number of reproducible co-accessible links in replicates. Reproducible co-accessible links in at least 
two replicates were used as the consensus set of autonomous links of co-accessibility (ACs). (D) Number 
of consensus ACs at treatment time points at TRGs (black) and non-TRG regions. (E) Mosaic plot of ACs 
with/without TRGs and H3K27ac at their start or end peak. P-value from Chi-squared test is provided. (F) 
Genomic location of ACs in relation to TADs from Hi-C data of unstimulated HUVECs. ACs were classified 
as within one TAD, across TAD boundary, and no TAD overlap. (G) Spearman correlation coefficients of 
TRG expression and the activity of ACs at the TRG’s promoters. Red lines indicate mean as well as mean 
plus thrice the standard deviation. (H) Spearman correlation coefficients of TRG JAG2, IER2 and IRF1 
expression and the activity of ACs at the TRG’s promoters. 
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Supplementary Figure 4. Metacell co-accessibility analysis with RWireX. (A) Chromatin co-
accessibility maps at the TNFAIP3, IFNGR1 and WAKMAR2 TRG cluster. DCs from metacell co-
accessibility of replicates (black), genes (gray), TRGs (blue) and 1 kb regions around the TSSs of TRGs 
(light blue) are indicated. (B) Reproducibility of co-accessible domains between replicates and consensus 
DCs. Consensus DCs are computed from the average metacell co-accessibility of replicates. The size and 
color of the dots reflect the percent of base pair overlap between the domains. (C) Differential accessibility 
in DCs after TNFα treatment of HUVECs across three biological replicates. Differential accessibility is 
visualized by log2FC and FDR. DCs with FDR below 0.05 are considered significant and marked in red 
(upregulated) and blue (downregulated). (D) Spearman correlation coefficients of TRG expression and the 
accessibility of DCs comprising the TRG promoters. A positive correlation between DC accessibility and 
gene expression is observed. (E) Expression of TNFAIP3 and chromatin accessibility (2 kb bins) at the 
TRG cluster of TNFAIP3, IFNGR1 and WAKMAR2. The merged TNFAIP3 DC is depicted in red. Cells are 
annotated by TNFα treatment condition. The heatmap shows an increased accessibility in the whole DC 
with high TNFAIP3 expression and a Spearman correlation coefficient of 0.45. 



 10 

 
 
Supplementary Figure 5. Local TF binding activity. (A) Binding activity scores (log10) of accessible NF-
κB/p65 motifs in the merged TNFAIP3 DC (left) vs. the genome-wide background of non-DC regions. 
(B) Differential binding activity in the merged TNFAIP3 DC vs. genome-wide non-DC regions. Differential 
binding activities across replicates of unstimulated and TNFα-stimulated HUVECs are visualized by 
average log2FC and p-values from meta-analysis. TFs with absolute log2FC above 1 and FDR below 0.05 
are considered significant. Binding activity at accessible NF-κB/p65 and NF-κB/p65/Rel motifs was 
significantly enriched upon TNFα treatment in the merged TNFAIP3 DC. (C) Images of NF-κB IF. Zoom-ins 
of exemplary cells are shown. (D) Nuclear NF-κB signal at different time points quantified from IF images. 
(Ei) Genome-wide footprints at accessible NF-κB/p65 (left), NF-κB/p65/Rel (middle) and NF-κB/p50/p52 
(right) motifs. Three replicates are shown with the different time points indicated by color. NF-κB footprints 
are present already at the uninduced time point and become stronger upon TNFα treatment.  
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Supplementary Figure 6. Features of AC, DC, and AC/DC chromatin modules. (A) Proportion of TRGs 
regulated by AC, DC and AC/DC chromatin modules in clustered and isolated TRGs; lncRNA and protein-
coding TRGs; down-, up- and mixed regulated TRGs; and early, late and persistent TRGs. (B) Proportion 
of AC and DC features in TRG clusters. AC scores (proportion of TRGs with AC features in TRG cluster) 
and DC scores (proportion of TRGs with DC features in TRG cluster) classify TRG clusters into AC, DC, 
AC/DC and NA clusters (background color). Histograms of AC and DC scores are shown. P-values from 
Shapiro-Wilk test are indicated. (C) Genomic size, TRG number and number of TRG neighbors in AC, DC, 
AC/DC and NA TRG clusters. P-values from Wilcoxon tests are indicated in the plot. 
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Supplementary Figure 7. Hi-C chromatin contacts at AC and DC chromatin modules. (A) Chromatin 
contact pileups of TADs without DCs (left) and all TADs (right) from Hi-C data of unstimulated HUVECs. (B) 
Metacell chromatin co-accessibility and chromatin contacts at the TRG KLF4. Top: co-accessibility map 
from metacell co-accessibility across unstimulated and TNFα-stimulated HUVECs. The average co-
accessibility of replicates is shown. The limits of the color scale are set to -0.3 and 0.3. Middle: genes (gray), 
TRGs (blue), and 1 kb regions around the TSSs of TRGs (light blue). Bottom: chromatin contact map from 
Hi-C data of unstimulated HUVECs. The maximum color scale is set to 100. (C) Metacell chromatin co-
accessibility and ACs from single cell co-accessibility in unstimulated and TNFα-stimulated HUVECs 
zoomed in at the TRG KLF4. Top: same as in panel B. Middle: 1 kb extended pseudo-bulk ATAC peaks 
(black); H3K27ac peaks from ChIP-seq of 30 min TNFα-stimulated HUVECs (green); genes (gray), TRGs 
(blue) and 1 kb regions around the TSSs of TRGs (light blue). Bottom: consensus ACs from single cell co-
accessibility of biological replicates. The color and height of loops reflect accessibility correlation and the 
percent accessible cells of linked peaks. 
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Supplementary Figure 8. Bursting kinetics of TRGs in AC, DC, and AC/DC chromatin modules. 
(A) Differential bursting kinetics in TRGs of AC, DC, and AC/DC modules. Average log2FC and p-values 
from a two-sided Wilcoxon test for differential burst sizes (shape outlines) and frequencies (filled shapes) 
are shown with p-value = 0.05 indicated by the dashed line. Burst sizes were significantly higher in DC vs. 
AC, while burst frequencies were significantly higher in AC and AC/DC vs. DC modules. (B) Differential 
bursting kinetics in individual TRGs of AC, DC and AC/DC modules. The absolute log2FC of burst 
frequencies (left) and sizes (right) per TRG after TNFα treatment are shown. P-values from Wilcoxon test 
are indicated as p > 0.05, ns; p-value ≤ 0.05, *; p-value ≤ 0.01, **; p-value ≤ 0.001, ***; p-value ≤ 0.0001, 
****. Burst size fold changes were significantly higher for TRGs in DC and AC/DC vs. AC, while burst 
frequency fold changes were significantly higher for TRGs in AC/DC vs AC and DC chromatin modules. (C) 
NFKBIA burst size (left) and frequency (right) from snRNA-seq and padFISH. Error bars represent the 
standard errors across three biological replicates. (D) padFISH images of intronic NFKBIA expression 
(yellow) and DAPI (gray). Zoom-ins to three exemplary cells per treatment condition are shown. (E) Same 
as panel C for SELE. (F) Same as panel D for SELE (magenta). (G) Same as panel C for BIRC2. (H) Same 
as panel D for BIRC2 (green).  
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Supplementary Figure 9. DCs and ACs in mouse cells under perturbation. (A) Metacell chromatin co-
accessibility of unstimulated and IFN-stimulated mouse embryonic stem cells at a cluster of interferon 
stimulated genes (ISG) with Psme1, Psme2 and Irf9. Induced binding of STAT1/2 complexes from ChIP-
seq of unstimulated and IFN-stimulated mouse ESCs (black), gene annotation (red, blue) and 1 kb regions 
around ISG TSSs (gray) are annotated. (B) Same as panel A for mesenchymal-like mouse embryonic 
fibroblasts at ISG Rnf213. (C) Metacell chromatin co-accessibility of Tbx21-wt and Tbx21-ko samples of 
mouse TCL1 model at T-bet dependent gene Gimap6. T-bet binding motifs (black), gene annotation (red, 
blue) and 1 kb regions around T-bet dependent gene TSSs (gray) are annotated. (D) Metacell chromatin 
co-accessibility and single cell co-accessible links in Tbx21-wt and Tbx21-ko samples of mouse TCL1 
model at T-bet dependent gene Slc11a1. Top: co-accessibility map from metacell co-accessibility across 
Tbx21-wt and Tbx21-ko TCL1 samples. Middle: 2 kb extended pseudo-bulk ATAC peaks (black); Tbet 
binding motifs (black); gene annotation (red, blue). 1 kb regions around T-bet dependent gene TSSs are 
marked in gray. Bottom: co-accessible links at T-bet dependent gene promoters from single cell co-
accessibility.  
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Supplementary Tables 

Supplementary Table S1. padFISH of CXCL intronic transcripts  
 

TNFα 
(min) Number/fraction of cells a Rep1 Rep2 Rep3 Mean 

0 
Total cell population 465 408 220  

Cells with co-localizing transcripts 11 5 18  

Fraction with co-localization (%) 2 1 8 4±4 

30 
Total cell population 358 388 271  

Cells with co-localizing transcripts 236 286 163  

Fraction with co-localization (%) 66 74 60 67±7 

240 
Total cell population 475 393 295  

Cells with co-localizing transcripts 167 122 122  

Fraction with co-localization (%) 35% 31% 41% 36±5 
 
Co-expression masks were defined from the co-localization of at least two transcripts. Out of the 
total cell population analyzed, only those cells that showed a minimum of one and a maximum of 
two co-expression masks were included in the analysis. The ratio between the two populations 
(cells with co-localizations vs. total cells) was only 4±4% at 0 min (unstimulated cells) since most 
cells had no co-localizing spot of two different nascent RNAs. This fraction increased to 67±7% 
and 36±5% for the 30 min and 240 min time points, respectively. 
 
 
Supplementary Table S2. Inventory of supplementary data sets associated with this 
manuscript. 

File Name Description 

Supplementary Dataset 1: 
Dataset_01_sc-seq_QC.xlsx 

QC parameters of single cell sequencing data. 

Supplementary Dataset 2: 
Dataset_02_TRGs.xlsx 

TRGs identified in HUVECs after 30 min and 240 min of TNFα 
treatment with adjusted p-values and log2 fold changes. Information 
on TRG clustering, factory TRGs and TRG regulation types are 
provided. 

Supplementary Dataset 3: 
Dataset_03_TRGclusters.xlsx 

TRG clusters with AC and DC scores and their classification into AC, 
DC and AC/DC. 

Supplementary Dataset 4: 
Dataset_04_ACs.xlsx 

Consensus lists of ACs called in at least two replicates. Separate 
sheets for ACs at different treatment time points are provided. 

Supplementary Dataset 5: 
Dataset_05_DCs.xlsx 

Called DCs with enriched co-accessibility scores. 

Supplementary Dataset 6: 
Dataset_06_PadlockProbes.xlsx 

Padlock probes used in the padFISH analysis. 
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Supplementary Table S3. Data analysis packages and software from external sources. 

Software Ref Link Version 

ArchR 7 github.com/GreenleafLab/ArchR 

1.0.3 scATAC; 
1.0.2 smMultiome 

Arrowhead 13 https://github.com/aidenlab/juicer/wiki/Arrowhead  

Bowtie2 14 bowtie-bio.sourceforge.net/bowtie2/index.shtml 2.3.3 

Cell Ranger 15 support.10xgenomics.com/single-cell-gene-
expression/software/pipelines/latest/what-is-cell-ranger 7.1.0 

Cell Ranger 
ARC 

 https://www.10xgenomics.com/support/software/cell-
ranger-arc/latest/getting-started/what-is-cell-ranger-arc 1.0.1 

Cell Ranger 
ATAC 

16 support.10xgenomics.com/single-cell-
atac/software/pipelines/latest/what-is-cell-ranger-atac 2.1.0 

chromVARmot
ifs  https://github.com/GreenleafLab/chromVARmotifs 0.2.0 

cooler 17 https://github.com/open2c/cooler  

coolpup.py 18 https://github.com/open2c/coolpuppy  

DESeq2 19 doi.org/10.18129/B9.bioc.DESeq2 1.40.2 
FIJI 20 https://imagej.net/software/fiji/ 2.14.0 
GenomicRang
es 

8 doi.org/10.18129/B9.bioc.GenomicRanges 1.52.0 

gUtils  doi.org/10.32614/CRAN.package.hutils 0.2.0 
Hic2cool  https://github.com/4dn-dcic/hic2cool  
HiCLift 21 https://github.com/XiaoTaoWang/HiCLift  
HISAT2 22 https://www.ccb.jhu.edu/software/hisat/index.shtml  
Homer 12 http://homer.ucsd.edu/homer/ 4.11 
HTSeq 23 https://pypi.org/project/HTSeq/  
ilastik 24 https://www.ilastik.org 1.4.0 
MACS2 25 https://pypi.org/project/MACS2/ 2.1.2 
Nextflow 26 https://nf-co.re/ 22.10.6 
Nf-core 
rnaseq  https://nf-co.re/rnaseq/3.14.0/ 3.9.0 

NOISeq 27 https://www.bioconductor.org/packages/release/bioc/ht
ml/NOISeq.html 

3.19 

plotgardener 9 https://bioconductor.org/packages/release/bioc/ 
html/plotgardener.html 1.6.2 

poolr 28 
https://cran.r-
project.org/web/packages/poolr/index.html 

1.1-1 

Python   3.10.12, TF activity; 
3.10.8, snMultiome 

R 29  www.r-project.org 4.3.1/4.3.2 (Multiome 
+ padFISH) 

scDblFinder 30 doi.org/10.12688/f1000research.73600.2 1.14.0, scATAC; 
1.16.0, snMultiome 

SciPy 31 scipy.org 1.11.4 
Seurat 32 satijalab.org/seurat/ 4.3.0.1 

SpectralTAD 10 https://bioconductor.org/packages/release/bioc/ 
html/SpectralTAD.html 1.16.1 

Tobias 33 https://github.com/loosolab/TOBIAS 0.15.1 
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Supplementary Table S4. Inventory of data sets deposited at external repositories. 

Data Repository Link Description 

scRNA-seq data  GEO, 
GSE273426 

www.ncbi.nlm.nih.gov/ge
o/query/acc.cgi?acc=GS
E273426 

Data for unstimulated and TNFα-
stimulated HUVEC samples  

snATAC-seq data  GEO, 
GSE273428 

www.ncbi.nlm.nih.gov/ge
o/query/acc.cgi?acc=GS
E273428 

Data for unstimulated and TNFα-
stimulated HUVEC samples  

snRNA-seq data GEO, 
GSE273427 

www.ncbi.nlm.nih.gov/ge
o/query/acc.cgi?acc=GS
E273427 

Data for unstimulated and TNFα-
stimulated HUVEC samples 

snMultiome RNA-
/ATAC-seq data 

GEO, 
GSE273429 

www.ncbi.nlm.nih.gov/ge
o/query/acc.cgi?acc=GS
E273429 

Data for unstimulated and TNFα-
stimulated HUVEC samples 

H3K27ac ChIP-seq 
(bulk) data 

GEO, 
GSE274452 

www.ncbi.nlm.nih.gov/ge
o/query/acc.cgi?acc=GS
E274452 

Data for TNFα-stimulated 
HUVEC samples 

Hi-C (bulk) GEO, 
GSE63525 

www.ncbi.nlm.nih.gov/ge
o/query/acc.cgi?acc=GS
E63525 

Data for analysis of chromatin 
contacts in uninduced HUVECs 
from ref. 13. 

RNA-seq (bulk) 
data 

SRA, 
SRP066044 

www.ncbi.nlm.nih.gov/sra
/SRP066044 

Data for unstimulated and TNFα-
stimulated HUVEC samples from 
refs 34, 35 

snATAC-seq data 
from mouse ESCs 
and MEFs 

GEO, 
GSE160764 

www.ncbi.nlm.nih.gov/ge
o/query/acc.cgi?acc=GS
E160764 

Data for co-accessibility analysis 
in mouse ESCs and MEFs from 
ref. 6. 

snATAC-seq data 
from TCL1 mouse 
cells 

GEO, 
GSE234226  

www.ncbi.nlm.nih.gov/ge
o/query/acc.cgi?acc=GS
E234226 

Data for co-accessibility analysis 
in TCL1 mouse cells from ref. 11 

padFISH BioImage 
Archive, 
S-BIAD1294  

www.ebi.ac.uk/biostudies/
bioimages/studies/S-
BIAD1294 

Fluorescence microscopy source 
images of the padFISH analysis. 

Vignette dataset 
for RWireX 
(GitHub) 

Zenodo https://doi.org/10.5281/ 
zenodo.13142236 

Vignette dataset for the RWireX 
software available from Github 
via the link https://github.com/ 
RippeLab/RWireX 
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