Gene regulation programs in a chromatin context

The central dogma in molecular biology

... with some feedback loops

Transcription regulation in bacteria

Regulator concentration -> promoter site occupancy -> transcription level

Repressor

The basic description of protein binding to DNA

$$AB \xrightarrow{k_{off}} A+B \xrightarrow{k_{off}} k_{on}$$

$$\frac{k_{\rm off}}{k_{\rm on}} = K_{\rm d} \qquad \text{relation}$$

$$\frac{1}{k_{\rm off}} = \tau \qquad \qquad \text{life}$$

$$\frac{d[AB]}{dt} = k_{on} \cdot [A] \cdot [B] - k_{off} \cdot [AB]$$

k_{on} cannot be higher than 10⁸ - 10⁹ M⁻¹ s⁻¹ for a diffusion controlled reaction

in s⁻¹ is the reaction rate constant for dissociation

in M⁻¹ s⁻¹ is the reaction rate constant for binding

tion to the equilibrium dissociation constant

time of the complex

rate equation for complex formation,

can be solved but it is already difficult

Initiation of transcription in the bacterium E. coli

- (a) RNA polymerase holoenzyme binds nonspecifically to DNA.
- (b) The holoenzyme conducts a one-dimensional search for a promoter.

(c) When a promoter is found, the holoenzyme and the promoter form a closed complex.

(d) A conformational change from the closed complex to an open complex produces a transcription bubble at the initiation site. A short stretch of RNA is then synthesized.

(e) The σ subunit dissociates from the core enzyme, and RNA polymerase clears the promoter. Accessory proteins, including NusA, bind to the polymerase.

A complex network links DNA to phenotype in eukaryotes

Epigenetic differences determine gene expression programs in higher eukaryotes

1% genomic differences

Image: James Balog Getty Images

No genomic differences

Reversible and heritable (re)programming of cell types

Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors

Kazutoshi Takahashi¹ and Shinya Yamanaka^{1,2,*} ¹Department of Stem Cell Biology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan ²CREST, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan *Contact: yamanaka@frontier.kyoto-u.ac.jp DOI 10.1016/j.cell.2006.07.024

Embryonic stem cells

Induced pluripotent cells

Transient expression of Oct4, Sox2 Klf4, c-Myc,

Fibroblasts

Reprogramming pluripotent stem cells by over-expressing Oct4, Sox2, cMyc and Klf4

Takahashi, K; Yamanaka, S (2006). "Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors". Cell 126 (4): 663–76

The "epigenetic landscape" from Conrad Waddington

Development

Scheme adapted from Conrad Waddington 1957, The strategy of the genes

Cell differentiation

A current definition of an epigenetic trait

alterations in the DNA sequence.

An epigenetic trait is a stably heritable phenotype resulting from changes in a chromosome without

Berger et al. 2009, Genes & Development

A cell's epigenetic landscape reflects...

Epigenetic signals define access to the DNA genome and cell type specific chromatin state patterns

The histone code: At least 17 different modifications at 128 core histone sites plus 48 linker histone H1 sites

Me1/2/3: Methylation (K, R) Ac: Acetylation (K, S, T) Pr: Propionylation (K) Bu: Butyrylation (K) Cr: Crotonylation (K)

Cit: Citrullination(R) OH: Hydroxylation (Y) Og: O-GlcNAcylation (S, T) Ar: ADP ribosylation (K, E)

- Ph: Phosphorylation (S, T, Y, H)
- Hib: 2-Hydroxyisobutyrylation (K)
- Ma: Malonylation (K)
- Su: Succinylation (K)
- Ub: Ubiquitination (K)
- Fo: Formylation (K)

Huang et al. Cell, 2014

A complex network of proteins sets and removes a variety of histone modifications at multiple sites

Kouzarides 2007, Cell

Chromatin modifications are set reversibly and recognized by dedicated readout proteins

Cancer genome-sequencing: recurrent mutations in 'writers', 'erasers' or readers' of modifications.

Transcription regulation Alternative splicing DNA replication DNA repair DNA recombination

Reader

Plass et al 2013, Nat Rev Mol Cell Biol

DNA methylases (DNMT1/3a/3b) Removal via hydroxylation (TET1/2/3) $t_{1/2} = 10 \text{ min to days}$

Histone lysine methylase (KMT) Histone lysine demethylase (KDM) $t_{1/2}$ = hours to days

Histone acetylases (HAT) Histone deacetylases (HDAC) $t_{1/2} = 2-40 \min(80\%)$

Reader proteins (MBD, bromo, chromo, tudor, PHD domains) $t_{1/2} = 1-10 \text{ sec}$

Chromatin remodeler (SNF2 family) ~30 sec (nucleosome translocation)

The epigenetic landscape is very dynamic and determined by > 600 proteins

Tracing epigenetic memory in living single cells

Bintu et al. Science 2016;351:720-724

Epigenetic memory is different for different modifications

Bintu et al. Science 2016;351:720-724

Maintenance methylation by DNMT1 can make *de novo* methylated sites self-sustained

Figure adapted from Easwaran, 2003

Self-sustained versus instructed DNA methylation

Stochastic epigenetic silencing

Self-sustained heritable silencing

Instructed epigenetic silencing

Reactivation if instruction is lost

Struhl 2014, eLife

Maintenance methylation by DNMT1 can make *de novo* methylated sites self-sustained

Figure adapted from Easwaran, 2003

Self-sustained versus instructed DNA methylation

Stochastic epigenetic silencing

Self-sustained heritable silencing

Instructed epigenetic silencing

Reactivation if instruction is lost

Struhl 2014, eLife

Silencing of tumor suppressors in the *INK4-ARF* locus for colorectal cancers is instructed and not self-sustained

KRAS mutation with CpG island dependent methylator phenotype (CIMP)

Serra et al 2014, eLife; Wajapeyee et al 2013, Genes Dev

Waddington: "The modeling of the epigenetic landscape... is anchored to the genes"

The strategy of the genes, 1957 (image rotated by 180°)

A broader definition of epigenetics

An epigenetic trait is a phenotype that is dependent on the chromatin state without alterations of the DNA sequence.

Instructed epigenetic trait

Silencing transcription of (peri)centromeric and telomeric repeats

Müller-Ott et al 2014, Mol Sys Biol; Mallm & Rippe 2015, Cell Rep; Rippe & Luke 2015, Nat Struct Mol Biol

'Epigenetic drugs' that target chromatin networks

 $\rightarrow \mathsf{AML}$

Silencing transcription of (peri)centromeric and telomeric repeats

The domino cascade model for spreading histone modifications along the DNA

Spreading in three dimensions?

in 1D: ~25 nm (extended chain)

in 3D: ~28 nm ("sea of nucleosomes")

3D constructions with dominos are very fragile...

from Annodomino2007 on Youtube

Chromatin organization provides an additional regulatory layer in eukaryotes

1-2 kb: Nucleosome clutches

10-100 kb: Chromatin domains and functional loops (E-P contacts)

100 kb to a few Mb:

Chromatin loops and topologically associating domains (TADs)

Up to 100s of Mb: Compartments and hubs

Nuclear Laminaassociated domain

Entire chromosomes: Chromosome territories

Adapted from Fitz-James & Cavalli 2022 Nat Rev Genet

Genome organization can regulate gene expression

The mammalian nucleus organizes genome functions in subcompartments

Transcriptionally inactive chromatin compartments

- PcG domains
- Inactive X chromosome (Barr body)
- Dense and repressive chromatin
- PML body
- Nuclear speckle
- Paraspeckle
- PML body complex with telomere
- Cajal body

Nuclear bodies

Mouse pericentric heterochromatin - a model system for a large silenced chromatin domain

Pericentric heterochromatin ("chromocenters")

Mouse chromocenters

- Nucleosomes: 230 µM
- HP1 α/β total: 10 μ M dimer

H3K9me3 modification

Writer SUV39H1/H2

Eraser JMJD2

Readers HP1α/β/γ SUV39H ATRX