Labeling and perturbation of endogenous gene loci using CRISPR/Cas9

Outline

- 1. Live cell CRISPR imaging
 - state-of-the-art strategies
 - advantages & limitations
- 2. CRISPR-based chromatin editing
 - concept & examples
 - outlook: optogenetic chromatin editing

Why target effectors or fluorphores to gene loci?

observe localization & dynamics of genomic regions under different conditions

correlate the presence of an effector (e.g. TF) and its effects (e.g histone modifications) to a phenotype

modulate gene transcription at the endogenous promoter level

Recruitment of effectors to transgene arrays to understand chromatin regulation

adapted from Rademacher et al., 2017 JCS

Limitations of transgene arrays to study properties and regulation of chromatin

Pankert et al., 2017

- introduction of foreign sequences \rightarrow risk of artifacts
 - position & copy number effects
 - recombination/instability
 - heterochromatization
- laborious generation & screening
- multiplexed targeting possible (lacO, tetO) but limited

CRISPR/Cas9 enables targeting of endogenous loci without modification of the target genome

S. pyogenes Cas9 protein

single-guide RNA (18-22 nt targeting region)

protospacer adjacent motif (PAM)

catalytically-dead Cas9 (dCas9)

high affinity ($K_D \sim 1 nM$)

 \rightarrow similar or higher than lacI/lacO

Chromatin function involves functional interactions between DNA, proteins and RNA

- histone proteins
- histone modifiers & remodelers
- transcription factors
- nascent & maturing RNA

chromatin-associated
RNAs with specific functions

A platform for site-directed delivery of proteins and RNA to chromatin

indirect protein recruitment

indirect RNA recruitment

CRISPR imaging

 \rightarrow strategies to target a detectable amount of fluorophores to one or more genomic loci of interest (in living cells)

considerations

- number and density of binding sites (theoretical)
- number of fluorophores per binding site (recruitment strategy)
- expression levels, brightness & background of fluorophores
- sensitivity and S/N ratio of the microscopy setup

CRISPR imaging of highly repetitive loci is achievable with low fluorophore-to-binding site ratios

Example: telomere vs. single gene

10 kb of $(TTAGGG)_n$ repeats; footprint of Cas9: ~75 bp:

~130 dCas9-EGFP molecules per telomere assuming 100% occupation

 \rightarrow assuming 50% occupation: 65 fluorophores/telomere

in our microscopy/transfection setup

 \rightarrow 50-60 fluorophores per gene locus in order to visualize it

Strategies to target many fluorophores to one locus?

Imaging of lowly/non-repetitive loci requires signal amplification strategies

multiple sgRNAs ("sgRNA tiling")

"Titrating" the number of binding sites required to visualize a single gene with dCas9-EGFP

sgMUC4-E3 max 200x dCas9-EGFP

50%: ~100 dCas9-EGFP

3 spots (HeLa, triploid for MUC4)

"Titrating" the number of binding sites required to visualize a single gene with dCas9-EGFP

73 sgRNAs binding in intron 1 of MUC4 max. 73 x dCas9-EGFP

50%: ~35 dCas9-EGFP

Chen et al., 2013 Cell

Imaging of lowly/non-repetitive loci requires signal amplification strategies

multiple sgRNAs ("sgRNA tiling") disadvantages ? many constructs, stronger perturbation (DNA replication)

multiple sgRNA-bound fluorophores

CRISPR-Sirius allows multiplexed imaging with fewer sgRNAs per target locus

MS2 loops / PCP protein PP7 loops / MCP protein → multiplexing

Ma et al., 2018 Nat Comm

Imaging of lowly/non-repetitive loci requires signal amplification strategies

multiple sgRNAs ("sgRNA tiling") disadvantages ? many constructs, stronger perturbation (DNA replication)

multiple sgRNA-bound fluorophores disadvantages ? sgRNA stability & recognition

multiple dCas-bound/fused fluorophores

The SunTag system enables recruitment of up to 24 fluorescent proteins per dCas9 molecule

Tanenbaum et al., 2014, Cell

imaging of MUC4 locus (triploid) in human osteosarcoma cells (U2OS)

dCas9-SunTag + sgRNA-MUC4-E3

Imaging of lowly/non-repetitive loci requires signal amplification strategies

multiple sgRNAs ("sgRNA tiling") disadvantages ? many constructs, stronger perturbation (DNA replication)

multiple sgRNA-bound fluorophores disadvantages ? sgRNA stability & recognition

multiple dCas-bound/fused fluorophores disadvantages ? dCas9 function & size

brigther & more stable fluorophore with reduced background fluorescence

Combining dCas9 with molecular beacons (MBs) for improved live cell CRISPR imaging

Wu et al., 2018 Nucleic Acids Res

Imaging of lowly/non-repetitive loci requires signal amplification strategies

multiple sgRNAs ("sgRNA tiling") disadvantages ? many constructs, stronger perturbation (DNA replication)

multiple sgRNA-bound fluorophores disadvantages ? sgRNA stability & recognition

multiple dCas-bound/fused fluorophores disadvantages ? dCas9 function & size

brigther & more stable fluorophore with reduced background fluorescence disadvantages ? costly, difficult delivery, toxicity (long-term imaging)

Summary (I)

CRISPR imaging allows to study nuclear architecture in living cells without modifying the target genome

CRISPR imaging requires considerations about

- target copy number and binding site density
- biological question
- construct delivery
- signal amplification
- invasiveness of labeling strategy

CRISPR chromatin editing

 \rightarrow any type of modification or interaction induced by recruiting effectors via dCas9 complexes

e.g. correlate a deposited histone modification with a phenotype (for example gene expression, accessibility)

• recruitment of transcriptional activators or repressors to gene loci in order to modulate their expression on the level of the endogenous promoter

CRISPR-activation (CRISPRa) using dCas9-VPR

RNA polymerase II histone acetylation decondensation

adapted from Jusiak et al., 2016

• recruitment of transcriptional activators or repressors to gene loci in order to modulate their expression on the level of the endogenous promoter

activating a silent reporter gene

• recruitment of transcriptional activators or repressors to gene loci in order to modulate their expression on the level of the endogenous promoter

dCas9-KRAB for efficient gene repression

KRAB domain: Krüppel associated box of some transcriptional repressors

- H3K9me3 deposition
- histone deacetylation

- ...

adapted from Oleksiewicz et al., 2017

• recruitment of transcriptional activators or repressors to gene loci in order to modulate their expression on the level of the endogenous promoter

H2B-Citrine

dCas9-KRAB

mCherry (co-transfection)

merge

Reversible effector recruitment to dCas9 for dynamic chromatin editing

optogenetic control of effector recruitment other ways: drug-induced (e.g Rapamycin, ABA)

Light-induced dCas9 based effector recruitment to telomeric chromatin occurs within seconds

Recruitment to dCas9 docked on telomeres is reversible and can be repeated

Summary (II)

- CRISPR chromatin editing allows to causally correlate chromatin features (for example histone PTMs) with a phenotype of interest
- CRISPR activation/repression is a great tool to modulate gene expression at the level of endogenous promoters
- reversible strategies for recruitment of effectors to dCas9 complexes on chromatin are particularly valuable

 \rightarrow dissection of molecular mechanisms at the chromatin level