Quantifying molecular mobility and interactions by fluorescence fluctuation microscopy

Mobility and interaction analysis of pericentric heterochromatin proteins in living cells by FRAP and FCS

Fluorescence recovery after photobleaching (FRAP)

scales: 0.3 µm, 10 µs - 1 s

Müller et al. (2009) *Biophys. J.* **97**, 2876-2885; Erdel, Schubert, Marth, Längst & Rippe (2010) *PNAS* **107**, 19873-19878; Erdel et al. (2011) *Chromosome Res* **19**, 99-115; Erdel & Rippe (2012) *PNAS* **109**, E3221-30.

Fluorescence bleaching/correlation analysis of chromosomal proteins

Wachsmuth, M., Caudron-Herger, M. and Rippe, K. (2008). Biochim. Biophys. Acta 1783, 2061-2079.

Fluorescence bleaching and correlation techniques to dissect protein interactions

Fluorescence bleaching and correlation techniques to dissect protein interactions

FRAP:

- slow/immobile particles (~100ms time resolution)
- diffusion coefficients
- rate constants (at immobile substrate)
- immobile fractions

CP:

- faster particles
- dissociation rates (at immobile substrate)

FCS/FCCS:

- fast particles (µs time resolution)
- concentrations
- diffusion coefficients
- anomaly parameters
- molecular interactions

Fluorescence recovery after photobleaching (FRAP)

Redistribution of molecules and recovery of the fluorescence signal:

- After the bleach step, bleached molecules leave the bleach region and fluorescent ones enter it owing to diffusion
- Bleached molecules bound to immobile binding sites are released to join the mobile pool
- The binding sites can be re-occupied by mobile fluorescent molecules
- This redistribution due to exchange of both bound and mobile bleached molecules by fluorescent ones results in the recovery of the fluorescence signal

Fluorescence recovery after photobleaching (FRAP)

Redistribution of molecules and recovery of the fluorescence signal:

Interpretation of recovery curve:

- half-time of recovery
- immobile fraction
- fully mobile fraction
- transiently bound fraction

Fluorescence recovery after photobleaching (FRAP)

Redistribution of molecules and recovery of the fluorescence signal:

- A major challenge in FRAP experiments is to dissect the contributions from the different classes of molecules...
- ... and the **exchange** between these classes
- This requires proper modeling of the data including diffusion and binding reactions

The two limiting cases for FRAP data analysis

"free" Diffusion Long-lived binding (no or only transient binding) (diffusion can be neglected) $F_{i}(t) = e^{-\frac{2\tau_{D}}{t}} \left[I_{0} \left(\frac{2\tau_{D}}{t} \right) + I_{1} \left(\frac{2\tau_{D}}{t} \right) \right]$ $F_{i}(t) = 1 - e^{-k_{\text{off}}t}$ dissociation rate diffusion time 1.2 slow binding (ω: beam radius) $\tau_D = \omega^2 / 4 D_{\text{eff}}$ 1 0.8 free/effective FRAP 0.6 diffusion Diffusion with transient binding (looks like slow diffusion) 0.4 **Different shapes** $D_{\rm eff} = \frac{D_{\rm free}}{1 + \frac{k_{\rm on}^*}{1 + \frac{k_{\rm on}}{1 + \frac{k_{\rm on}}{$ 0.2 of recovery curves! 0 time (s) -0.2 -50 0 50 100 150

200

Diffusion with transient binding

Transient binding: Reduction of the diffusion coefficient, shape of the FRAP curve remains unchanged from diffusion

"Transient" means: Many binding events occur during translocations on the length scale of the bleach spot => only one fit parameter: the *effective* diffusion coefficient

If D_{eff} (free diffusion) and D_{free} (free diffusion) are known, the rate constant ratio is obtained

Fluorescence recovery with both diffusion and binding

Coupled diffusion and reaction:

Consider a diffusive fraction A and an immobile, bound fraction B that exchange according to

$$A + B \xrightarrow[k_{on}]{k_{on}} AB$$

This can be described with the diffusion-reaction equations

$$\frac{\partial c_{\text{diff}}(\mathbf{r},t)}{\partial t} = D \nabla^2 c_{\text{diff}}(\mathbf{r},t) - c_B k_{\text{on}} c_{\text{diff}}(\mathbf{r},t) + k_{\text{off}} c_{\text{bound}}(\mathbf{r},t),$$
$$\frac{\partial c_{\text{bound}}(\mathbf{r},t)}{\partial t} = -k_{\text{off}} c_{\text{bound}}(\mathbf{r},t) + c_B k_{\text{on}} c_{\text{diff}}(\mathbf{r},t)$$

This system of coupled differential equations is difficult or impossible to solve, especially for complex boundary conditions (bleach geometry, molecular kinetics)

Determining diffusion coefficient *D*, kinetic binding rates k_{on} and k_{off} , and the apparent equilibirium constant K_{eq}^*

Erdel, Müller-Ott, Baum, Wachsmuth & Rippe (2011) Chromosome Res 19, 99–115.

Profile FRAP – hints on diffusion and reaction dependencies

Profile FRAP – hints on diffusion and reaction dependencies

- fit postbleach profiles to obtain the squared width $\sigma^2(t)$ of the bleach strip over time
- plot $\sigma^2(t)$ reveals diffusive behavior, determine *D*

Fluorescence recovery due to diffusion <u>and reaction processes</u>

Diffusion and binding on different time scales:

Then, the diffusion and the reaction contribution can be treated independently

$$\frac{\partial c_{\text{diff}}(\mathbf{r},t)}{\partial t} = D\nabla^2 c_{\text{diff}}(\mathbf{r},t) - c_B k_{\text{on}} c_{\text{diff}}(\mathbf{r},t) + k_{\text{off}} c_{\text{bound}}(\mathbf{r},t)$$
$$\frac{\partial c_{\text{bound}}(\mathbf{r},t)}{\partial t} = -k_{\text{off}} c_{\text{bound}}(\mathbf{r},t) + c_B k_{\text{on}} c_{\text{diff}}(\mathbf{r},t)$$

Fluorescence recovery due to diffusion and reaction processes

Diffusion and binding on the same time scales:

The full coupled reaction-diffusion scheme must be solved.

Fluorescence correlation spectroscopy (FCS)

Fluctuations of the particle number of a 1 nM rhodamine solution in dependence of the observation volume

Size [mm]	Volume [I]	particles	ΔN	ΔN/N [%]
10	10 ⁻³	6.023·10 ¹¹	776080	0.00013
1	10 ⁻⁶	6.023·10 ⁸	24541	0.0041
0.1	10 ⁻⁹	6.023·10 ⁵	776	0.129
0.01	10 -12	602.3	24.5	4.075
0.001	10 -15	0.6023	0.776	128.9

The autocorrelation function (ACF) encodes molecule concentration and dynamics

Extracting mobility information by fitting a correlation function for free diffusion in 3D

Extracting the mobility information by fitting a correlation function for free diffusion in 3D

That's how a 'point' in the confocal microscope looks like

 $\Psi_{k}(\mathbf{r}) = \exp\left(-2\frac{x^{2}+y^{2}}{w_{0}^{2}}-2\frac{z^{2}}{z_{0}^{2}}\right)$

Green's function for free diffusion

That's how a diffusing molecule spreads out over time (in 1D)

$$P(\mathbf{r}_1, \mathbf{r}_2, \tau) = (4\pi D\tau)^{-3/2} \exp\left(-\frac{(\mathbf{r}_2 - \mathbf{r}_1)^2}{4D\tau}\right) \quad \text{for 3D}$$

Extracting the mobility information by fitting a correlation function for free diffusion in 3D

definition of the correlation function $G(\tau)$:

Combine fluorescence bleaching and correlation techniques to dissect diffusion and chromatin interactions of heterochromatin protein 1 (HP1)

Fluorescence correlation spectroscopy (FCS) of the histone methylase SUV39H1

cytoplasm: $0.015 \pm 0.006 \mu M$ euchromatin: $0.11 \pm 0.07 \mu M$ heterochromatin: $0.8 \pm 0.5 \mu M$

FCS experiments Heterochromatin: $D_1 = 0.02 \pm 0.01 \ \mu m^2 \ s^{-1}$; $D_2 = 18 \pm 2 \ \mu m^2 \ s^{-1}$ Cytoplasm: $D = 26 \pm 3 \ \mu m^2 \ s^{-1}$

Fluorescence cross-correlation spectroscopy (FCCS)

A cross-correlation analysis reveals the degree of molecular interactions

Studying ligand binding by FCCS

FCCS measurements of single and double-labeled DNAs

- $G_x(0)$ increases with the fraction of double-labeled DNAs
- cross talk between detection channels causes G_x(0) > 0 also for 0% double-labeled DNA
- G_{x,max}(0) < 1 due to incomplete overlap of excitation focus volumes

Quantitating the amount of double-labeled molecules

instrument correction for cross-talk, chromatic abberrations etc.

$$ratio \ G_{cor} = \frac{ratio \ G_{exp} - ratio \ G_{min}}{ratio \ G_{max} - ratio \ G_{min}}$$

Rippe, K. (2000) *Biochemistry* **39**, 2131-2139. Weidemann, T., Wachsmuth, M., Tewes, M., Rippe, K. & Langowski, J. (2002) *Single Molecules* **3**, 49-61.

Analysis of the DNA binding capacity of ACF and ISWI by FCCS

ISWI alone shows little cross-correlation above background

 \Rightarrow binds only a single DNA duplex (maybe some ISWI dimers present)

ACF shows strong cross-correlation signal

⇒ binds at least two DNA duplexes simultaneously

Analysis of the DNA binding capacity of ACF and ISWI by FCCS

 $ratioG_{cor} = f(binding sites n, subunits k, diss. const. K_d)$

n = 4 DNA binding sites per ACF complex $k = 2.1 \pm 0.8$ ISWI-Acf1 subunits $K_{d} \sim 10$ nM

Strohner R et al., Nat Struct Mol Biol (2005)