Mapping the internal structure of a living cell from a protein's point of view

image from Lucic et al., JCB, 2012

Dynamic processes in the cell nucleus take place on the microsecond to hour time scale

Wachsmuth, M., Caudron-Herger, M. and Rippe, K. (2008). Biochim. Biophys. Acta 1783, 2061-2079.

	Typical resolution	Acquisition rate (frames/sec)	Light exposure
Wide field	250 nm (x,y) > 2 μm (z)	200	low
Confocal	250 nm (x,y) 600 nm (z)	1-10	high
Line scanner confocal	Line scanner confocal 250 nm (x) 380 nm (y) 700 nm (z)		low

Typical values for diffusion coefficients in the nucleus

	D _{min} (µm² s⁻¹)	Accesible corral radius	Methods
Chromatin/ telomeres	2·10 ⁻³ 4·10 ⁻⁴ 2·10 ⁻⁵	0.08 μm 0.2 μm 0.3-0.8 μm	CLSM, single particle tracking
Transcription factor	10-15 (free) 0 - 0.01	up to 10 µm (nucleus)	FRAP (bound) FCS (free, transiently bound)
Membrane proteins	2-20 (2-D)	10 µm (nuclear membrane)	FRAP FCS

Accessible range of diffusion coefficients for CLSM, FRAP and FCS measurments

	t _{min} / t _{max}	Typical analysis volume	D _{min} / D _{max}
Confocal (single particle tracking)	0.4-2 sec / infinite	10 x 10 µm (x,y) 600 nm (z)	0 µm² s-1 / 10 µm² s-1
FRAP	0.4-2 sec /	2 x 2 μm (x,y)	0 µm² s-1 /
	infinite	0.6 - 5 μm (z)	10 µm² s-1
FCS	1 µsec /	250 nm (x,y)	0.05 μm² s ⁻¹ /
	1 sec	600 nm (z)	200 μm² s ⁻¹

Diffusion coefficients of GFP multimere in the nucleus measured by FRAP (widefield microscope)

Kitamura & Kinja 2018, doi: 10.2142/biophysico.15.0_1

Diffusion coefficients of GFP multimeres in the nucleus measured by FCS

		NL (fast/first components)		FRAP
Cell line	Type of GFP	$D^{\ddagger} (\mu m^2 s^{-1})$	Fraction (%)	
HeLa	GFP ₁	24.2 ± 1.3	_	20.9
	GFP ₂	17.6 ± 1.2	_	11.2
	GFP ₃	13.0 ± 1.0	_	8.00
	GFP ₄	11.0 ± 0.7	-	7.57
	GFP₅	8.9 ± 0.4	_	

Pack et al. Biophysical journal 91, 3921–3936

Retrieving the intracellular topology from multiscale protein mobility mapping in living cells

Scale independent free diffusion in solution

Anomalous diffusion in fractal environments

Anomalous diffusion in the presence of random obstacles/in porous media

Trapping particles in corrals/confined diffusion

Small range of point FCS measurements

Wassily Kandinsky POINT AND LINE TO PLANE

Malte Wachsmuth

point (confocal) line (cylindrical lens)

plane (light sheet)

Measuring time-dependence of protein mobility by multi-scale fluorescence cross-correlation spectroscopy (msFCCS)

Validation: msFCCS of GFP in vitro in buffer solution

^c cor

Multi-scale mobility measurements reveal topology of the particle environment

Comparison of spatial msFCCS and FRAP results for measurements of a bleach spot of 1.3 µm diameter

msFCCS protein mobility maps of GFP monomer in the nucleus

Spatiotemporal mobility analysis of GFP multimers in the nucleus and the cytoplasm of living cells

Time-dependent protein diffusion in living cells

Model for diffusion in porous media

$$D(t) = (D_0 - D_\infty) \exp\left(-\frac{4\sqrt{D_0 t}}{\sqrt{\pi}\lambda}\right) + D_\infty$$

Model from Loskutov et al., Journal of Magnetic Resonance, 2013

Model parameters:

- *D*₀ : Microscopic diffusion coefficient
- D_{∞} : Macroscopic diffusion coefficient
- λ : Correlation length

Derived parameters:

R : Retardation / tortuosity S/V : Specific surface η_{app}/η_{H2O} : Viscosity ratio

Parameters for intracellular obstacle structure derived from the fit to the porous medium model

Parameters for fiber shaped obstacle structure:

	$\Phi_{_0}\left(\% ight)$	r _{fiber} (nm)	λ _{GFP} (μm)	χ (nm)
Nucleus	18 ± 5	6 ± 2	0.8 ± 0.2	~15
Cytosol	12 ± 9	4 ± 2	0.8 ± 0.2	>15

msFCCS protein mobility maps of transcription factor STAT2 and a chromatin interacting chromodomain protein (CD)

STAT2-GFP

CD-GFP

Drug induced chromatin decondensation increases overall nuclear protein mobility and reduces retardation $R (= D_0/D_{\infty})$

GFP₃ : $R = 3.1 \pm 0.3$, $\lambda = 1.6 \pm 0.3$ + **TSA**: $R = 2.8 \pm 0.7$, $\lambda = 2.0 \pm 0.8$ + **CQ** : $R = 2.1 \pm 0.3$, $\lambda = 1.7 \pm 0.7$ A quantitative model of the intracellular structure on the nanometer scale as it is "sensed" by a protein

- Cellular interior is not fractal but has random obstacle / porous medium topology
- Quantitative description with a three parameter model (D_0 , D_{∞} , λ)
- Nucleoplasm and cytoplasm very similar except for some GFP₅ trapping in the nucleus
- Protein size dependent searched surface, larger particles partially excluded
- Determines target search processes in a size dependent manner
- Perturbances of cellular structure by drugs that target chromatin, cytoskeleton etc.

Baum 2014, Nat. Commun.; Erdel 2014, J. Phys. Condens. Matter, 2015