Transcription regulation in living human cells

Initiation of transcription in the bacterium E. coli

Transcription initiation by RNA polymerase II

Cheung ACM, Cramer P: A movie of RNA polymerase II transcription. Cell 149, 1431-1437 (2009

Yeast RNA polymerase II with activator complex

Seizl 2011

Packaging of the eukaryotic genome in chromatin/nucleosomes suppresses transcription and additional activator complexes are needed to assemble active Pol II at the promoter

More than **300 000** putative enhancers regulate ~**54 000** annotated human genes (including lncRNAs)

Cell type specific activity estimates

- ~20 000 active genes
- 80 000 240 000 active enhancers
- typical: 1-2 target promoter per enhancer
- ~10 different targets for some enhancers
- multiple enhancers for single promoter
- 300-500 super enhancers > 10 kb

Heinz 2015, Nat Rev Mol Cell Biol Roadmap Epigenomics Consortium 2015, Nature FANTOM Consortium 2015, Nature

Following gene expression in living cells

Heterochromatic locus:

- array with ~200 repeats of reported
- compact chromatin state
- H3K9me3
- HP1 enriched

Janicki *et al.* (2004) From silencing to gene expression: real-time analysis in living cells. *Cell* 116:683-698.

CFP-Lacl (chromatin) CFP (translated protein)

MS2-YFP (RNA)

Triggering protein relocalization in living cells

Tischer, D. & Weiner, O. D. (2014) Illuminating cell signalling with optogenetic tools. *Nature Reviews Molecular Cell Biology* 15(8): 551-558.

Light-inducible interactions are rapid and reversible

Photosensitive protein	Turn-on speed	Turn-off speed (t _{1/2})	Chromophore requirement	Compatible imaging wavelengths (nm)	λ _{on} (nm)	λ _{off} (nm)	Effector affinity	Refs
РНҮВ	Seconds	 Seconds (illuminated at 750 nm) Hours (dark reversion) 	PCB; exogenous or synthesized in situ	≤514	650	750	 <100 nM (post 650 nm) >100 μM (post 750 nm) 	16–18
CRY2	Seconds	5 minutes	Flavin; endogenous	≥561	405–488	NA	Not determined	9–11
LOV	Seconds	Tens of seconds to minutes	Flavin; endogenous	≥514	440–473	NA	• 1 µM (dark) • 100 µM (light)	12–15, 67
Dronpa	Seconds	 Tens of seconds (illuminated at 390 nm) Tens of minutes (dark reversion) 	None	≥600	390	490	 10 μM (post 490 nm) >100 μM (post 390 nm) 	19

CRY2, CRYPTOCHROME 2; NA, not applicable; PHYB, PHYTOCHROME B; PIF, PHYTOCHROME INTERACTING FACTOR.

Tischer, D. & Weiner, O. D. (2014) Illuminating cell signalling with optogenetic tools. *Nature Reviews Molecular Cell Biology* 15(8): 551-558.

Triggering protein relocalization in living cells

Kennedy, M. J., Hughes, R. M., Peteya, L. A., Schwartz, J. W., Ehlers, M. D. & Tucker, C. L. (2010) Rapid bluelight-mediated induction of protein interactions in living cells. *Nature Methods* 7(12): 973-975.

Blue Light-Induced Chromatin Recruitment BLInCR

Blue Light-Induced Chromatin Recruitment (BLInCR)

Rademacher, Erdel, Trojanowski, Schumacher & Rippe, Journal of Cell Science, 2017

The PHR-CIBN interaction is rapidly induced and reversible

Tracing transcription activation with BLInCR in living cells

Reporter cell line U2OS 2-6-3 from Janicki 2004, Cell

Heterochromatic locus:

- array with ~200 repeats of reported
- compact chromatin state
- H3K9me3
- HP1 enriched

Tracing transcription activation with BLInCR in living cells

Reporter cell line U2OS 2-6-3 from Janicki 2004 Cell

RNA (MS2)

Heterochromatic locus:

- array with ~200 repeats of reported
- compact chromatin state
- H3K9me3
- HP1 enriched

Transcription activation of the array proceeds in two phases

HDAC inhibition increases the fast activatable fraction

Assembling activation complexes around dCas9 for lightinduced and reversible targeting of endogenous loci

Modulating liquid-liquid phase separation propensity through optodroplet formation

PHR fusion optodroplets are favored by

- fused multivalent effector
- high protein concentration
- high blue light intensity
- \rightarrow tunable system for droplet formation

HP1α silences transcription independent of droplet formation

High activator turnover rate could lead to a reduced activation potential

FRAP reveals large differences in turnover rates between dCas9 effector complexes

The activation kinetics indicate the presence of a feedback loop

Transcription decays after an activating light pulse

Light-induced measurements of transcription activation kinetics

Rademacher, Erdel, Trojanowski & Rippe, submitted