Interaction of DNA-bound proteins via DNA-looping

Organization of the genes regulated by Lac repressor, a transcription repressor protein in the bacterium E. coli

low glucose and low lactose => both CAP and LacI are bound => repression

Lac repressor bound — to O1 and O3

More than **300 000** putative enhancers regulate ~**54 000** annotated human genes (including lncRNAs)

Cell type specific activity estimates

- ~20 000 active genes
- 80 000 240 000 active enhancers
- typical: 1-2 target promoter per enhancer
- ~10 different targets for some enhancers
- multiple enhancers for single promoter
- 300-500 super enhancers > 10 kb

Heinz 2015, Nat Rev Mol Cell Biol Roadmap Epigenomics Consortium 2015, Nature FANTOM Consortium 2015, Nature

How do enhancers activate transcription?

Karr et al. 2022, Genes & Dev 36, 7-16, https://doi.org/10.1101/gad.349160.121

Scanning force microscopy (SFM) of DNA and protein-DNA complexes in air and in buffer solutions

Movement of a DNA fragment on a mica surface visualized by scanning force microscopy (SFM/AFM)

SFM image of a 6.8 kb superhelical plasmid

3. Looping of a chromatin fiber - the conformation of yeast chromosome III during interphase

Theoretical description of DNA using the model of a freely jointed chain (FJC-chain) or the model of a elastic rod

statistical segment or *Kuhn* length *l*

Freely Jointed Chain model (FJC) for polymers ≥ 6 *Kuhn* segments

Kratky-Porod (KP) or worm-like chain for polymers of all length

Numerical computer simulations (Monte-Carlo, Brownian dynamics)

The freely joined chain model is similar to a random walk in three dimensions

The chain consists of *n* segments with length *l* and the end-to-end vector *r*.

$$\langle r^2 \rangle = r \cdot r = \left(\sum_{j=1}^n I_j\right) \cdot \left(\sum_{k=1}^n I_k\right) = \sum_{j=1}^n \sum_{k=1}^n I_j \cdot I_k$$

$$\langle r^2 \rangle = n l^2 + 2 \sum_{j>k} I_j \cdot I_k$$
 $\langle r^2 \rangle = n l^2$

average end-to-end distance:

radius of gyration:

• The average end-to-end distance of a polymer chain as well as the radius of gyrations *R* is proportional to the square root of the chain length.

• The statistical segment length / reflects the stiffness of the polymers. For DNA at physiological salt concentrations it is l = 100 nm (300 base pairs).

The local concentration function in dependence of r for the description of DNA acording to the freely jointed chain model

Theoretical description of a polymer using the model of an elastic rod or Kratky-Porod (KP) chain

$$\langle \cos \theta(s) \rangle = \exp\left(-\frac{s}{a}\right)$$

definition of persistence length a

 $l = 2 \times a$

relation of *a* to *Kuhn* length *l*

$$\langle r^2 \rangle = 2a L_C \left[1 - \frac{a}{L_C} \left[1 - \exp\left(-\frac{L_C}{a}\right) \right] \right]$$

average squared end-to-end-distance $< r^2 >$ for a KP-chain of contour length L_c

Theoretical description of DNA using the model of a freely jointed chain (FJC-chain) or the model of a elastic rod

Freely Jointed Chain model (FJC) for Kratk polymers with $n \ge 2-3$ segments for for $\sqrt{1-1}$

statistical segment with Kuhn length l

Kratky-Porod (KP) or worm-like chain for polymers of contour length *L*_c

Persistence length *a*

$$\langle r^2 \rangle = n l^2$$
 $\langle r^2 \rangle = 2a L_C \left[1 - \frac{a}{L_C} \left[1 - \exp\left(-\frac{L_C}{a}\right) \right] \right]$

 $l = 2 \times a$

relation of persistence length a to Kuhn length l

The local molar concentration j_{M} of a protein in the proximity of another DNA bound protein

Interaction of two sites with a separation distance and a reaction distance *r*

intrinsically curved regions

cyclization of ends

The Gaussian distribution function for the freely jointed chain

$$W(r) = \frac{\left(\frac{3}{2\pi \cdot n \cdot l^2}\right)^{\frac{3}{2}}}{\exp\left(\frac{3r^2}{2n \cdot l^2}\right)} \quad \text{or} \quad W(r) = \frac{\left(\frac{3}{2\pi \cdot n}\right)^{\frac{3}{2}}}{\exp\left(\frac{3r^2}{2l^2n}\right) \cdot l^3} \quad \text{or} \quad W(r) = \frac{\left(\frac{3}{2\pi \langle r^2 \rangle}\right)^{\frac{3}{2}}}{\exp\left(\frac{3r^2}{2\langle r^2 \rangle}\right)} \quad \text{with} \quad \langle r^2 \rangle = n \cdot l^2$$

for small r the exponential term is ~ 1

$$W(r) = \left(\frac{3}{2\pi \cdot n \cdot l^2}\right)^{\frac{3}{2}} \quad \text{or} \qquad W(r) = \left(\frac{3}{2\pi \cdot n}\right)^{\frac{3}{2}} \cdot l^{-3} \quad \text{or} \qquad W(r) = \left(\frac{3}{2\pi \langle r^2 \rangle}\right)^{\frac{3}{2}}$$

and for I = 100 nm and 0.34 nm/bp

$$j_{\rm M}(bp) = 0.0028 \cdot bp^{-\frac{3}{2}} \left[\frac{\rm mol}{\rm liter}\right]$$

$$\dot{J}_{\rm M}(r) = \frac{\left(\frac{3}{2\pi}\right)^{\frac{3}{2}}}{l^3 n^{\frac{3}{2}}} \left[\frac{10^{27} \text{\AA}^3 \text{M}}{6.022 \text{e} 23}\right]$$

The local concentration j_M between two sites on doublestranded DNA depends on their separation distance

Values for j_{M} can be calculated from the contour length and flexibility of a specific nucleic acid chain

Nucleic acid chain	Length per monomer unit	Kuhn length (nm) (2x persistence length)
dsDNA	0.34 nm b ⁻¹	100
dsRNA	0.27 nm b ⁻¹	70-80
ssDNA	0.50-0.60 nm nt ⁻¹	2-6
Single-stranded poly(rU)	0.65 nm nt ⁻¹	4
Single chromatin fiber	8.6 nm kb ⁻¹	60
Chromatin fiber	9.6 nm kb ⁻¹	137-440
Metaphase chromosome	34 nm Mb ⁻¹	300-5400

Abbreviations: b, base pair; nt, nucleotide; kb, kilobase pair; Mb, megabase pairs

Calculating the local concentration j_M of one site in the proximity of the other site for a linear polymer

approximation of FJC and KP-chain for linear polymer with 0.5 < n < 100

$$j_{\rm M}(n) = 0.53 \times n^{-3/2} \times \exp\left(-\frac{2}{n^2}\right) \times l^{-3} \quad \frac{\text{mol nm}^3}{\text{liter}}$$

 $n = \frac{\text{number of monomers} \times \text{monomer length}}{\text{Kuhn length } l}$

for a 30 nm chromatin fiber with a contour length of 11.1 nm/kb DNA and a Kuhn length *I* = 60 nm: $n_{\text{fiber}} = \frac{s \, (\text{kb}) \times 11.1 \, (\text{nm/kb})}{60 \, \text{nm}}$

Rippe, K. (2001). Making contacts on a nucleic acid polymer. Trends Biochem. Sci. 26, 733-740.

Dependence of the local concentration $j_{\rm M}$ on the site separation distance for circular and linear chains

Dependence of local concentration j_{M} on the site separation distance *b* in base pairs for double-stranded DNA

$$j_{\rm M}(b) = 2.7 \times 10^{-3} \times b^{-\frac{3}{2}} \times \exp\left(\frac{d-2}{1.2 \times 10^{-5} \times b^2 + d}\right) \frac{\rm mol}{\rm liter}$$

Looping of single-stranded RNA – Antitermination of RNA polymerase by phage lambda *N* protein

von Hippel, P. H., Rees, W. A. Rippe, K., Wilson, K. S. (1996) Biophys. Chem. 59, 231-246.

Local concentration of *N* protein in the proximity of the RNA polymerase for specifically and unspecifically bound *N*

total RNA length (unspecific binding)

site separation from terminator to hairpin

Local concentration $j_{\rm M}$ for the 30 nm chromatin fiber

Summary on polymer models for long range interactions

Homogenous polymer model with three parameters:

- Stiffness: statistical segment length or persistence length
- Contour length: polymer length in nm/base pair or nm/nucleotide
- **Contact distance**: r = 0 nm (DNA circle ligation) or r = 10 nm (protein-protein)

Local concentration j_{M} in mol/liter to express looping contact probability:

- Describes interaction probability of one sites on a polymer near another one
- j_M can be compared to the concentration without polymer tether ("in trans)
- j_M gives DNA concentration where circle and dimer formation have equal probability

Calculating j_{M} for two sites with a certain distance on a polymer:

- Universal description of j_{M} vs separation distance in statistical segment length units
- j_{M} has a maximum at 1.7 x the statistical segment length
- Specific polymer: j_M as a function of stiffness, contour length and contact distance

Imaging-based approaches to visualize chromatin contacts

Szabo, Q., Bantignies, F., Cavalli, G. (2019). Science Advances 5(4), eaaw1668. https://dx.doi.org/10.1126/sciadv.aaw1668

Capturing Chromatin Conformation (3C assay) mapping the 3D genome by cross-linging

Chemical cross-link two sites on the chromosome

Quantitate cross-link efficiency and relate it to **genomic distance**

Dekker, J., Rippe, K., Dekker, M. & Kleckner, N. (2002) Science 295, 1306-1311.

Capturing Chromatin Conformation (3C assay) by *in vivo* cross-linking of whole cells or isolated nuclei

Cross-linking analysis of the *in vivo* interphase conformation of the complete yeast chromosome III (315 kb) in G1

Cross-linking analysis of the *in vivo* interphase conformation of the complete yeast chromosome III (315 kb) in G1

Average 3-D conformation of yeast chromosome III (315 kb) in interphase

3C and its derivatives

Kempfer, R., Pombo, A. (2019). Nature reviews. Genetics <u>https://dx.doi.org/10.1038/s41576-019-0195-2</u>

Hi-C – map all interactions

Hierarchical organization of the eukaryotic genome

			Methods		
			Sequencing-based Mi		Microscopy
Size	Organization level		Enrichment	Non-enrichment	
Entire chromosomes	Chromosome territories	chr1 chr2 chr2 chr2 chr2 chr2 chr2 chr3		• GAM • GPSeq	3D FISH
Up to 100s of megabases	 Compartments Hubs 	B compartment A compartment	 DamID TSA-seq ChIA-PET ChIA-Drop 	 GAM Hi-C Micro-C GPSeq SPRITE 	 Super-resolution FISH Electron microscopy
100 kb to few megabases	 Topologically associating domains Chromatin loops 	Cohesin CTCF	 Capture-C cHi-C 4C ChIA-PET ChIA-Drop HiChIP PLAC-seq 	• GAM • SPRITE • Hi-C • Micro-C	Super-resolution FISH
10–100 kb	 Chromatin nanodomains Functional loops (E–P contacts) 	CND Gene Enhancer	 Capture-C cHi-C 4C ChIA-PET ChIA-Drop HiChIP PLAC-seq 	• GAM • Micro-C	Super-resolution FISH
~1–2 kb	Nucleosome clutches			Micro-C	 Super-resolution FISH Electron microscopy

Jerkovic' & Cavalli, Nat Rev Mol Cell Biol, 10.1038/s41580-021-00362-w

Summary on chromatin conformation capture analysis

- In situ cross-linking maps of sites that interact in the genome
- Either targeted to specific sites (3C, 4C) or genome-wide (HiC)
- Resolution depends on distribution of fragment size and sequencing depth
- Averaging over many cell can obscure the true conformation
- Regions of "random" coil polymer conformation but also specific loops
- Chromosome form "territories" and interactions on the same chromosome at short distances < 100 kb are most probable
- Identifies "topologically associated domains" (TADs) that are 1 Mb in size where interactions are facilitated
- TADs spatially organize promoter-enhancer interactions