! of certain nucleic acids. Some of these issues parallel those of the preceding chapters,
! where more emphasis was placed on proteins and polypeptides. The book concludes
| in Chapter 25 with a shift to the important subject of membrane equilibria and the

i structure and behavior of lipid bilayers.
: Of course. much of the material in Part III 1s tied closely to the discussion in

Parts | and I1. In appropriate places, reference is made to the earlier chapters. How-
ever, many readers will find it possible to read a good portion of this Part without
having read the other Parts, particularly if the appropriate section of an earlier chapter

is consulted when needed.

15

Ligand interactions at equilibrium
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15-1 IMPORTANCE OF LIGAND INTERACTIONS

A wide variety of physiological processes are the reflection of ligand interactions
with macromolecules, especially with proteins. The most common are interactions
between enzymes and their substrates and with other molecules that influence activ-
ity. In addition, there are interactions between hormones and hormone receptors,
between small molecules and proteins involved in the active transport of the small
molecules, between ions and both nucleic acids and proteins, and so on. Upon
reflection, it is clear that virtually all biological phenomena depend on one or more
ligand interactions. It is not surprising, therefore, that a large amount of biochemical
and biophysical research has been directed at exploring these interactions in depth.

Our first consideration is to develop the statistical framework that enables us
to treat (and to gain insight into) the principal features of an equilibrium ligand
association system. These are general considerations that apply to any equilibrium
system. In addition, there are many special features, such as site-site interactions
and cooperativity, linkage relationships between two different ligands binding to the
same macromolecule, and statistical complications associated with linear, latticelike
chains.

General features of ligand interactions at equilibrium are developed in this
chapter; Chapter 16 treats kinetic phenomena. In addition, Chapters 16 and 17 deal
with some of the special areas that play a prominent role in biochemistry. These
include enzymatic systems (Chapter 16) and regulation phenomena (Chapter 17)
commonly known as allosteric interactions. The treatment of some of these issues
draws on the general framework laid down in this chapter.
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15-2 LIGAND EQUILIBRIA
Macroscopic and microscopic constants

Before discussing the association of ligands with mult.ip_te gites on macmnmleculc}:,
it is useful to discuss briefly the distinction hﬂtw.a_en MICTOSCOPIC n_md mMacroscopie
equilibrium constants. A concrete example is provided by the titration of the amino
acid elvcine. This can be viewed as a dibasic acid. We define GH3 . GH._ and G as
the forms bearing two, one, and no protons, respectively. The macroscopic equilibria

are
GH} = GH + H” (15-1a)

GH=G +H' (15-1b)
and the two macroscopic dissociation constants are given by

K, = (GH)(H " )/(GH3) (15-2a)
K, = (G )(H )AGH) (15-2b)

The two pK values can be obtained from a titration: at 25°C, extrapolated to zero
ionic strength, they are pK, = 2.35, and pK, = 9.75. _ _ SR

We now examine the microscopic states of glycine during the titration. Alto-
gether there are four forms, where

GH; = 'H,NCH,COOH (15-3a)
GH = "H,NCH,C0O0~ + H,NCH,COOH (15-3b)
G~ = H;NCH,C00"~ (15-3c)

and the microscopic ionization equilibria are

. ks
;_f:?; ey
*H,NCH,COOH H,NCH,COO"~ (15-4)
r;::"\-\. ,.r(_.-,"'-.
L _:‘“Q_‘-:‘ E".:'""

" £
H,NCH,COOH

where the k, values are microscopic dissociation constants. According to Equations

15-2 and 15-3,
K, = [(*H;NCH,COO") + (H,NCH,COOH)](H (T HyNCH,COOH)

(15-5;
=k] ‘I'j\': 1]

152 LIGAND EQUILIBAIA

Ky = (H;NCH,COO™ )(H")/[(*H;NCH,CO0 ") + (H,NCH,COOH|]

= 1/(k3" + ki) (15-5b)

Equation 13-5 shows the relationships between the microscopic and Macroscopic
dissociation constants.
The four microscopic constants are not independent. In particular,

kiky = kaky (15-6)

Equation 15-6 is easy to verify; it is a direct consequence of detailed balancing. Equa-
tions 15-5 and 15-6 give three relationships involving the four microscopic constants.
A fourth relationship may be obtained by assuming that k, has the same value as the
single dissociation constant for the methyl ester of glycine (* H,NCH,CO,CH, =
H,NCH,CO,CH; + H"). This assumption gives pk, = 7.7. With the values of pK ,
and pK, given earlier, it then is easy to calculate from Equations 15-5 and 15-6 that
pk, = 2.35, pk; = 9.78, and pk, = 4.43. From these values, the reader should be
able to deduce whether dissociation from "H;NCH,COOH to neutral glycine
proceeds predominantly by the top path or the bottom path in Equation 15-4.

This simple illustration serves as a concrete example of the meanings of micro-
scopic and macroscopic constants, and of their interrelationships. As a second
example, we treat a situation in which statistical effects come into play. Consider a
molecule A, which has two equivalent sites for a specific ligand. For instance, A
might be a long-chain aliphatic dicarboxylic acid in which the microscopic dis-
sociation constant is the same for each carboxylic group, regardless of the ionization
state of the other group (this condition can be fulfilled if the aliphatic chain is long
enough that electrostatic interactions between the two carboxyl groups are negl-
gible). The macroscopic equilibria are

A+ H' 2AHT), (15-7a)
AfH®), + HT 2 AH), (15-7h)
and the macroscopic dissociation constants are given by
K, = (A)H")AHT),) (15-Ba)
K = (A(H),)(H )Y(AHT),) (15-8b)
The microscopic equilibria can be written schematically as

A+H" =AH" (15-9a)

A+ H* = THA (15-9b)
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AH®* + H' = *HAH® {15_9.:}

*HA + H™ 2 "HAH® (15-9d)

where the microscopic dissociation constant k is the same for each step. In Equation
15-9 we have distinguished between microspecies by assigning one ionization site Lo
‘he left and the other to the right side of A. In terms of microscopic species, the
macroscopic forms are defined as

A=A (15-10a)
A[H*), = AH* + "HA (15-10b)
A(H"); = “HAH® (15-10c)

From Equations 15-8 to 15-10, we conclude that

K, = k2 (15-11a)
K, =2k (15-11b)
K,/K,=1/4 (15-11c)

Thus, even though the microscopic dissociation constant is the same for each ioniza-
tion, statistical effects make the first apparent macroscopic dissociation constant
four times smaller than that of the second one.

In this chapter and in Chapter 17, we frequently use the concepts of microscopic
and macroscopic constants, and it will be important to keep firmly in mind the
distinctions between them that are illustrated in the preceding examples,

15-3 IDENTICAL INDEPENDENT SITES

Calculating the number of microscopic species

We first consider a macromolecule M, which contains n sites for the ligand L. Each
site has the same microscopic ligand dissociation constant k. The sites also are
assumed to be independent—that is, the microscopic dissociation constant k for a
particular site is the same regardless of the state of occupancy of the other sites. The
equilibria that characterize the interaction may be written as

M, + L& M,

M._|+|._.—'|'l;'l_ ':IE_!::I

15-3 IDENTICAL INDEFENDENT SITES

where thﬂ. index on M denotes the total number of molecules of L that are bound.
Thus, M; is taken to mean the toral set of microscopic species that have i bound maole-

cules of L. Fm_' example, if n = 4, and we schematically represent our macromolecule
as a square with four sites,

3 O+l + (15-13)

L A L T I
M, = + i <“ L
¥ L b L

where each microscopic form is present in equal amounts. Thus, with n = 4. there

are six microscopic species that comprise M,. In general, there are (), distinct ways
to put i ligands on n sites, where®

ﬂﬂlz-’lHUE—”K{H—E}K---x{r1—I+|}|_ n!

i " =i

(15-14)

Consequently, there are Q, ; microscopic forms that make up M,.

Calculation of v

Equilibrium measurements of ligand binding typically yield the moles of ligand

bound per mole of macromolecule. This parameter generally is designated v; it 15
given by

L

v= Y iM)]

i=0 j a=

(M) (15-15)
1

Our goal is to express v in terms of the free ligand concentration, (L).
In general, we can express the concentration of any form M; in terms of any

" Equation 15-14 is easy to derive. There are n different sites in which to place the first ligand; aﬂ:l:r. it
has been placed, there are n — 1 sites available for the second, then n — 2 for the t_hlrfl. and so on, with
n— i+ 1 sites available for the ith ligand. The product n x (n— 1} % < x{n =i+ 1) would give the
total arrangements possible except that there is a redundancy; this arises because we have fnun!td :at_'h
distinct arrangement of i ligands in n sites more than once. For example, il we place the first ligand in
site 2 and the second in site 4, this gives the same end result as if we had placed the first in site 3 and the
second in site 2. In the product n x(n=1) x ="~ % {n — i+ 1), we have counted each distinct arrange-

ment i! times, 50 a correction must be made. _ : odt .
3 : : I ;
Mote also that ﬂ” is the binomial coe fficient of x' 1n ihe EXpansion o [1 4 X7
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other form by m: iking use of the macroscopic dissociation constants. For example,

K, = (MoML)/(M,) (15-16a)
h = (M;_ .,ufu (M) (15-16b]
Ix = 1&1"_,1::L:-4M"} (15-16¢)
and
(M,) = (M, J(L)/K; —1M.;,HL1‘I ['1 K, (15-17)
=y

The macroscopic constant K; is to be distinguished from the single microscopic
constant k that characterizes all of the sites. The dissociation constant k refers to the
equilibrium with respect 10 particular microscopic species, whereas the macroscopic
constant K, involves the entire ensemble of species represented by M, and M,_,. For
example, 1.-,“], n — 4. and again using the format of the schematic illustration from

0 e )

= (15-18)

@ & Bl

Equation 15-13,

l_‘|
£ T

whereas K ,, for example, is

)+ (HY)+ ) &)

The relationship between K, and k is governed by the simple statistical factors
01, .. In particular, it is easy Lo show (Problem 15-1) that

K; = (£- 1/ 800Kk (15-20)
Therefore, we can rewrite Equation 15-17 as
(M) = (M,_ JLYK; = (M- )[(n = i + 1)/i][(L) k] (15-21)

With similar expressions for (M, _ ), (M, _ ,), ete., we obtain

(15-22
cru-i.]zxmn]ﬂl [ —j m} [(LY/K] S42)

=1

15-1 IDENTICAL INDEPEMDENT SITES

Substitution of Equation 15-22 into Equation 15-15 gives

I_nl {fl ln—j+ 1:;]}[:1_1 k]!

V= —

{i ek 'r {1‘[ [(n—j+ HH}HLH]

(15-23)

Although Equatinn 15-23 appears algebraically complex, it readily simplifies.
The product term is identical to Q, , (Eqn. 15-14):

IH] [(n —j + 1)/i] = nljin — i)i! (15-24)

Substituting Equation 15-24 into Equation 15-23, we obtain

Y i[nl(n = DNLLYKT
--'” et (15-25)
1+ ¥ [n¥(n — Y] L(LYK]

i=1

The denominator of Equation 13-25 is simply the binomial expansion of [ 1 + (L)/k]":
[1+(LYk]"=14+ ¥ [nln— it ]ILYk] (15-26)
=]

Differentiation of Equation 15-26 with respect to (L)/k, followed by multiplication
by (L)/k, gives

a[(LYKI[1 + (LYK]" ' = ¥ i[n!fn — D%JL(LYE] (15-27)

i=1

[he right-hand side of Equation 15-27 corresponds to the numerator ol Equation
15-25. Substituting Equations 15-26 and 15-27 into Equation 15-25, we obtain

[ |

IR (15-28)
1 + (L)/k ‘

vi(L) = n/k — v/k J (15-29)

ur

—
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The simple forms of Equations 15-28 and 15-29 suggest that these eXpressions
can be derived without recourse to the statistical framework we have E‘-‘['l_em_[td-
This is indeed the case. although the derivation just given is useful in that 1t gives
good insight into the statistical features of the binding equilibna.

A simple derivation

An easy way to derive Equation 15-28 is to focus on the binding equilibrium of site
i only. Let @, be the fractional saturation of site i. Then,

0, = (Bound site {)/[(Free site i) + (Bound site i}]

(Free site i) (Bound site i)/(Free site i) |

- - . -- —e {15-30)
(Free site {)[ 1 + (Bound site i)/(Free site i) |
Because (Bound site i)/{Free site i) = (L)/k, we have
(L)/k
B =— (15-31)
1 + (LYk

A similar expression may be written for each of the n identical sites. Adding these n
expressions together, we obtain Equation 15-28 (note that E,- B, = v).

Scatchard plot

Equation 15-29 is a useful representation of the relationship between v and (L) for
the simple case of identical independent sites. A plot of v/(L) versus v 1s sometimes
known as a Scatchard plot (see Scatchard, 1949). This plot is linear with an ordinate
intercept of n/k, an abscissa intercept of n, and a slope of —k~' (Fig. 15-1). Clearly,
this plot provides a simple and convenient way to obtain the two parameters that
characterize the binding equilibria.

15-4 MULTIPLE CLASSES OF INDEPENDENT SITES
Curved Scaichard plots

In many cases, a Scatchard plot of v/(L) versus v proves to be curved rather than
linear. This may mean that more than one class of sites are present. II there are n,
independent sites with the intrinsic microscopic dissociation constant k,, and n,

£ T 3y G TR T T
BT E  NRT
R g St ¥ )

B F
E

el

Intercept = n/k

/(L)

Intercept = n
{l

¥

Figure 15-1

Scatchard plot for identical, independent binding sites.

sites with dissociation constant k. and so on, then an equation analogous to Equa-
tion 15-28 holds for each class of sites. Thus we obtain

_. ALYk, I

b Y ' ' 15-32)

] =1+ (L) I!L',- i l:

and
el —
L.
L) =X 1 B (15-33)

=1 4 LK

Equations 15-32 and 15-33 are parametric forms that may be used to obtain the
parameters n; and k, from a Scatchard plot. Figure 15-2 15 an illustration of a biphasic
plot for the case of two classes of independent sites.
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Decomposition of a biphasic Scatchard plot

The plot in Figure 15-2 may be decomposed as follows. A tangent line is drawn 10O
the plot around v = 0. The /(L) intercept of this line® is ny/k; + na/k;. As a first

— Intercept = ny 'k, + ny/ka

v{L}

Figure 15-2

A biphasic Scatchard plor,
Intercept = n, + n,|

(L)

approximation, we can assume that it is dominated by the smallest k (defined as k)
and estimate that the intercept is equal to n/k,. Likewise, the v intercept of the
tangent line is taken to be a first estimate of n,. With estimates of n, and k,, we can
subtract from the data the contribution of the strongest-binding (smallest-k) sites.
We then can construct a new plot that can be analyzed according to Equation 15-29
In order to obtain estimates of n, and k.

The first estimate of all the parameters may be improved by a refinement pro-
cess. For example, a new estimate of n,/k, may be obtained by subtracting the
approximate values of ny/k; from the v/(L) intercept of the tangent line mentioned
above. After this, the process can be continued to obtain a new estimate of n, and ;.
Throughout the procedure, the constraint is used that n, + n, equals the observed
v intercept. The refinement procedure is continued until ¥ ;(n,/k;) equals the observed
v/(L) intercept.

Figure 15-3 gives data for the binding of Mn®" to the 5'-(three-fifths molecule)
of a specific transfer RNA in 0.1 M triethanolamine. Based on the tRNA cloverleal

"The ratio v/(L) appears to go to /0 when (L) — 0. The value of this indeterminate form can be ob-
tained from I'HOpital's rule, which says that the limiting ratio 15 given by the limit of the denivative of the
numerator (v) divided by the derivative of the denominator, (L). From Equation 153-32, [dv/d{L)],,,., =
% ngky, and d{Ly/d{L) = 1; therelore,

lim [vALY] = ¥ n/k,
L} ik T

This result also is oblained by letting (L) — 0 on the right-hand side of Equation 15-33.

=
= Figure 15-3
E Biphasic Scatchard plor of Mn** binding to

the 5'{three-filfths molecule) of a specific
tRNA. [After A. A. Schreier and P. R
Schimmel, J. Mol. Biol. 86:601 (1974).]

structure, this nucleic acid fragment contains single-stranded regions and a double-
helical hairpin stem and hairpin loop. The data were analyzed as just described to
Bll"r'L'- two classes of sites with n, =6 and n, = 10: the dissociation constants are
ky = 14 pm and k; = 200 pm. The curve is constructed from these calculated param-
eters, whereas the points are experimental. Good agreement is achieved between the
calculated and observed behaviors.

Are the parameters obtained from a multiphasic Scatchard plot unique? For
example, could other n; and k; values equally well fit the data in Figure 15-37 With
the constraint that n, + n, = constant, variations of +1 in n; give relatively small
(less than + 507%) changes in the &; values for this particular example. This suggests
that the k; values are reliable. A related question 1s whether the data might also be
described well by positing more than two classes of sites. Of course, the greater the
number of parameters available to fit any data to a model, the better will be the
agreement between theory and experiment. The best procedure is to account for
data, within the limits of experimental error, with the fewest possible assumptions
and parameters. This approach gives a picture of the minimal {and presumably
dominant) features of the system.

15-5 INTERACTION BETWEEN SITES

Some general considerations

Now we must ask whether the assumption of separate classes of sites, and the
representation of Equations 15-32 and 15-33, is the only way to account for curved
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Scatchard plots. It clearly is not. It is possible, for example, that binding of one
ligand alters the affinitv of the macromolecule for the successive one, and so on,
effectively producing a continuous variation in the microscopic dissociation constant.

For the simple case of one class of identical sites, we can define kg as the micro-
scopic dissociation constant at v = (. As v increases, interactions between siles
cause a change in k. Let AG” be the standard free energy change for dissociation of
a bound ligand. This 1s given by

AG? = AGy + RT(v) (15-34)

where AGS = —RT In k,, and ¢(v) i5 a function that, by definition, takes into
account the effects of interactions between sites that vary with the degree of satura-
tion. From Equation 15-34, and the relationship k(v) = e 2“"*7, we obtain

k(v) = ke~ * (15-35)

where ¢(v) 15 zero at v = 0.

Equations 15-28 and 15-29 can now be used, but with k replaced by k(v) from
Equation 15-35. If ¢»(v) is a decreasing function of v, then k(v) increases as saturation
proceeds. In this case, the Scatchard plot according to Equation 15-29 will be curved,
concave upwards. On the other hand, if ¢b(v) increases as v increases, then the
Scatchard plot can be “humped,” or concave downwards. As binding proceeds,
successive ligands are bound more strongly (smaller dissociation constants). This
situation corresponds to one in which a cooperative interaction between sites occurs

as v increases. Figure 15-4 illustrates the two cases.

gh(v) increases

v/(L)

dilv] decreases

Flgure 15-4

H ypothetical Seatchard plots for cases where

i v) decreases or increases with increasing

15-5 INTERACTIOM BETWEEM SITES

Because ¢(v) is a completely arbitrary function. it can always be defined so as
to explain any data according to Equations 15-28 and 15-35, In an ideal situation,
enough 15 known abnul_nh; system under investigation that one can reasonably
choose between the description of Equation 15-35 or the assumption of independent
classes of sites as the best way to account for a curved Scatchard plot. If Equation
15-35 15 believed to be the best description, then it is desirable to have a model for
the system that permits a theoretical derivation of the functional form of piv). For
example, simple electrostatic theory can be used to estimate ¢(v) for the association
of ions with a charged macromolecule (see Tanford, 1961). With a definite form
assigned to ¢iv), one then can test whether the data actually do conform to Equa-
tion 15-35.

However, in many situations it is not possible to derive an expression for ¢(v).
Enough information about the system simply is not available.

In the absence of accurate information on (or evidence for) negatively inter-
acting sites as described by Equation 15-335, it is best to treat a concave-up Scatchard
plot in terms of independent classes of sites (according to Eqns. 15-32 and 15-33).
This, at the least, provides a useful phenomenological description of the system.
Moreover, in any given situation, the likelihood of genuinely distinct classes of sites
may be self-evident. In the example of Figure 15-3, the macromolecule under inves-
tigation presumably contains both single-stranded and double-stranded sections.
Because the two types of sections are known to have significantly different ligand
(Mn?") affinities, a model with at least two classes of sites is physically reasonable.
If, as in the example, the data can be quantitatively accounted for by the different
classes of sites known to exist in the macromolecule, then there i1s no reason to
invoke possible effects due to g(v).

However. in the event of a concave-down Scatchard plot (Fig. 15-4), separate
classes of noninteracting sites cannot be assumed. This is because the description of
Equations 15-32 and 15-33 gives only concave-up plots. Therefore, a concave-down
plot is definitive evidence for interactions between sites: ¢(v) decreasing with in-
creasing v. We treat such systems in following subsections. _

In the general case where there are several classes of interacting sites, then
Equations I?’n-ﬁl and 15-33 apply. with each k; replaced by k;(v) where, by analogy

with Equation 15-35,

ki(v) = kgie~ (15-36)

where k;; is the intrinsic microscopic :Ji;s-ucimiqn constant at v = {'}.Eur siiv:s_ in
class ¢ and ¢,(v) is the interaction function for sites in class i. Il_‘:e interaction function
1y be unique, so that ¢;(v) can be different from @;(v). Of
' in conjunction with Equation 15-36, are useful
! is known for each of the various

for each class of sites m:
course, Equations 15-32 and 15-33,
only if enough information is available that @(v)
classes of sites.
The preceding

discussion serves to sketch the general issues that must be con-
sidered in treating interacting sites. In practice, cooperative inter

actions are probably

B61
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the most commonly encountered examples of interacting sites. These are considered
next.

Prevalence of cooperative interactions

There are many examples in biology of the association of ligands with a macromole-
cule being a cooperative process. One of the best-studied examples 15 the association
of oxygen with hemoglobin, discussed in greater depth in Chapter 17. In addition,
many multisubunit enzymes bind substrates or other molecules in a cooperative
fashion. The enzyme aspartate transcarbamoylase (also considered in Chapter 17)
exhibits this kind of behavior. And, in some instances, certain nucleic acids coopera-
tively bind particular ligands. Thus, cooperative interactions are widespread in
biological svstems.

The cooperative association of ligands with macromolecules has been treated
by many authors. Some aspects of these treatments, and some of the models for co-
operativity put forth, are discussed in Chapter 17. At this point, however, it is worth
considering some of the elementary features of these kind of interactions.

Statistical effects and interaction energy

For the sake of illustration, consider a macromolecule that combines with four
ligands, L. If all of the sites are identical and independent and bind L with a micro-
scopic dissociation constant k, then, according to Equation 13-20, the four macro-
scopic constants are

K, =(1/4)k (15-37a)
K, =(2/3)k (15-37Db)
Ka=(3/2)k (15-37c)
Kye=4k (15-37d)

Therelore, in this case, K, < K; < K, < K, that is, viewed from the standpoint
ol the macroscopic constants, the binding appears to become progressively weaker
as saturation proceeds, even though the same microscopic constant holds for each
gite. Thus, from the standpoint of the macroscopic dissociation constants, statistical
effects introduce some apparent anticooperativity into the binding equilibria.

In a cooperative system, when corrected for statistical eftects. the apparent
dissociation constant for one or more of the successive steps decreases as saturation
progresses. In the example of a macromolecule with four sites, this means thar, if
cooperativity occurs between the first and second step, then (as a consequence of
Eqn. 15-37) 4K, = (3/2)K,; il all four steps involve progressively stronger binding,
then 4K, = (3/2)K, = (2/3 K, = (1) K,.

155 IMTERACTION BETWEEM SITES

The magnitude of the cooperativity involved in binding two ligands can be cast
into units of energy by a simple procedure. Let AG! = RTIn K, be the apparent
standard [ree energy change for binding the ith ligand in a series. (Recall that K, is
a dissociation constant, so that — RT In K, is the free energy change associated with
dissociation; therefore, +RT In K, is that associated with association.) This free
energy change contains a pure statistical component given by RT In (Q,,_,/0,.)
(ef. Egn. 15-20). To correct for this, we define the intrinsic standard free energy change
associated with binding of the ith ligand in a series as AG", which is

AG} = +RTIn K; - RT In(Q, ;. /2, ;) (15-38)

We define the interaction energy AG, ;; per site as the difference in the intrinsic free
energies of association of the ith and jth ligands. This interaction energy is

AG,,; = AG? — AG?

|

L& Y ¢ ) (15-39)

= —RTIn(K/K)) + R'j"]n(—
: ﬂ'l'l,_l—'l ﬂn.j_.-

With this definition of AG, ;, if the jth ligand binds more strongly than the ith (j = i),
then as in a cooperative system, AG, ;; < 0. Note also that, if each site has the same
intrinsic dissociation constant, then the two terms on the right-hand side of Equation
15-39 cancel, and AG, ;; = 0.

In the case of oxygen binding to human hemoglobin, Equation 15-39 gives
AG,;; = —2 keal mole™ " site™" for i = 1 and j = 4. This means that site-site inter-
actions stabilize a bound oxygen molecule in the saturated hemoglobin tetramer
by approximately 2 kcal mole ™' over an oxygen molecule bound to a hemoglobin

species that has three vacant sites,

A semiempirical approach: the Hill constant

For the purpose of treating and characterizing data on the cooperative association
of ligands, it is common practice to use a semniempirical approach ;1_11::1 then to interpret
the physical significance of the empirical parameters that are obtained. Thl!i approach
is based on the assumption that the binding over part of the saturation e
be described by equations phenomenologically rcsemhling ﬂmse I'nr_ in infinitely
cooperative system. In the extreme case of infinite cooperativity, the binding can be

represented as an “all-or-none” reaction.

(15-40)

M, +nL & M,

K" = (Mp)(LF/(M,) (15-41)
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where K is the apparent dissociation constant for the interacting sites. For this case,
the parameter v is given by

v = n{M,)/[{(Mg) + (M,)]
= [a(L/K"]/[1 + (LY/K"] (15-42a)
v(L) = [n(L)""*/K"}/[1 + (LY 'K™] (15-42h)

whereas the fractional saturation ¥ = v/n 18

¥ = [[LY/K"}/[1 + (LY/K"] (15-43)

Equations 15-40 through 1543 are based on the assumption that binding is
infinitely cooperative for all n ligands. In practice, infinite cooperatively is not
observed. Instead. data on cooperative interactions commonly are described over
part of the saturation range (typically 25%, to 757%) by semiempirical relationships
analogous to Equations 15-40 through 15-43. These semiempirical relationships are

v = [n(L)y*/K=]/[1 + (Ly™/K™] (15-44a)
vi[L) = [H“_,]I"- l..-H-'tu] !_l 2 8 H_}I”:.K:“J _“ 5--—1‘"]]
y = [(Ly/ K=/ + (LK™ §‘ (15-45)

where 1 < oy < n. The parameter ay commonly is known as the Hill constant (see Hill,
1910): it is an index to the cooperativity. When ay; = n, the system behaves as perfectly
cooperative, whereas oy = | indicates no cooperativity. Figure 15-5 shows several
plots of ¥ versus (L)/K for various values of ay. It is clear that the steepness of the
curve 15 very sensitive 1o oy.

From Equation 15-45, the parameter oy is given by

| ~d[In(L)] (15

| = il W
l d{In[ V/(1 __'.]],___IH J

a5 a convenient definition of the Hill constant. In general
the entire range of values of ¥, so that &, is a

Equation 13-40 serves
Equation 15-45 does not hold over

=

Figure 15-5

Effect of @y on fractional saturation curces

0 1.0 o0 g 40

(LYK

function of the degree of saturation. Often the parameter ay is evaluated at j =
| — 7 = 1/2. In this case, Equation 15-46 becomes (note that d Inx = dx/x]

b

(AL = F0Fyasb £ i

dLY  Jye1z  (Lh il

L

where (L), is the concentration of L at half-saturation, and 2y 2 is the value of
2, when ¥ = 1/2. Equations 15-46 and 15-47 are useful relationships; they show that
the Hill constant can be obtained from the slope of a plot of In[F/(1 — ¥)] versus
In(L), which is called a Hill plot.

Equation 15-d4 gives parametric relationships that can be used to analyze
Scatchard plots of cooperative associations, sometimes over a broad range of values
of v and (L). These plots are markedly different from those discussed earhier for
independent, noninteracting sites. According to Equation 15-44b, for ay > 1 the
plot actually passes through the origin—as when v = 0 [or (L) = 0] and /(L) = 0.
At low values of v or (L), the curve rises and reaches a maximum at V., = nloy — 1)/,
and then descends to intercept the v axis at v = n.

Figure 15-6 shows an example of this kind of Scatchard plot. This figure gives
data on the cooperative association of Mn** to transfer RNA. The concave-down
character of the plot is clearly evident. Parameters that characterize the interaction
may be obtained by defining K™ in terms of experimentally determined variables as

follows:

K™ = |L]=]|[”|M]IJ - “__rhj “—}I: []_‘5.43]

and rearranging Equation 15-43 to give

In(L) = —(1/ay) In[(n/v) = 1] + In K (15-49)
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Figure 15-6

Scarchard plot of Mn®* binding to a specific
tRNA. [After A. A. Schreier and P. R.
Schimmel, J. Mol. Biol. 86:601 (1974). ]

where (L), is the concentration of bound ligand, (M), is the total macromolecule
concentration, and v = (L),/(M),. It is clear from Equation 15-49 that a plot of
In(L) versus In[(n/v) — 1] should give a straight line with slope of —1 /ey, and intercept
of —In K. The linearity is very sensitive to the value of n assumed, so that a good
check is obtained on the value of n determined from the Scatchard plot. When the
data in Figure 15-6 are plotted according to Equation 15-49, the parameters n = 3,
2 = 2.3, and K = 3.7 um are found to describe the data accurately. These data show
that Mn** binding is cooperative, and that about five sites are involved; however,
they do not act in a wholly “all-or-none” fashion, because x,; < n. This is analogous
to oxygen binding to hemoglobin, where o is 2.5 to 3.0 and n = 4.

Although not considered further here, these data and other results are particularly
useful in constructing a model for the association of cations with tRNA (see Schimmel,
1976).

15-6 BINDING OF TWO DIFFERENT LIGANDS: LINKED FUNCTIONS

Thus far we have considered only situations in which one kind of ligand binds to a
macromolecule. However, there are situations encountered in practice where the
simultaneous binding of two different ligands must be considered. One example 18
the effect of pH on ligand binding. In this instance, the binding of H™ to one or more
critical sites is closely linked to the association of ligand.

When two different ligands bind to a macromolecule, there 15 an interesting and
useful set of interrelationships that describe the binding equilibria. Our treatment
follows lines developed by J. Wyman (1964). We start by considering again the
binding of a single ligand L to n sites on a macromolecule M. We use a somewhat
different formalism than that developed earlier; this one is particularly useful for
treating linked equilibria.

15-8 BINDING OF TWO MFFERENT LIGANDS: LIMKED FUNCTIONS

@ Formalism
| The macroscopic equilibria may be written as follows:

M, + iL = M, fori=1,2....n (15-50)

and the apparent dissociation constant K, is
Ki=(MgL¥/M) fori=12...,n (15-51)

where (M) is the concentration of macromolecules that have i bound ligand molecules.
Note that our defimition of K; differs from that of the macroscopic constant K used
earlier (Eqn. 15-16). The number of moles of L bound per mole of M is ny and is
given by

Y iM) Y [HLY/K,
]

= =

Mjemit et B (15-52)
Y, M) Y [LYK]
=0 =1}

df1n 1 [(L) h]}

1 0
e ) (15-53)
Finti i T d[In(L}]

where K, is equal to unity. Equation 15-53 is a particularly useful form.

Each K, is related to the microscopic constants that characterize the binding to
each of the n sites on M. Letting the microscopic constants be distinct and designated
as ky, ks, ..., k,, we can easily show (Problem 13-3) that

"_ [(Ly/R,] = [1+ (LykJ00 + (Lyka] - - [T+ (L)/k,] (15-54)

Il every k; = k, then

L
L |
L

S [LY/R] =[L + LY (15-

i=0

and, from Equation 15-33,

v = [(Lyk]/[1 + (L)/k] (15-56)

Equation 15-56 is identical to Equation 15-28, with ¥ = v/n.
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® Two ligands and a basic linkage relationship

Assume now that there are two ligands, L, and L;. There are n sites for L, and m sites
for L,. Let ¥, be the fractional saturation with respect to ]_,11 and ¥, be that with
respect to L. We define the macroscopic equilibrium constant K jfor the equilibrium

iLy + jLy + My 2 M, (15-57)
il
Ry = (L)LY (Mo)(M;)) (15-58)

where M;; has i molecules of L, and ; molecules of L, bound to it, and M, has neither
ligand bound. Note that Ky, = 1. The parameter nf, thus is given by

l L r[MU]

np, =2 (15-59)

Y ¥ My

i=0 j=0
Using Equation 15-58, we obtain
¥ ¥ L LYK
i=0 j=0 :tj'ﬁr..]:

Y ¥ [L)L)/Ry)

=0 j=0

ny, =

or

;?ll.lh 22 [, :".1L:|E:E|':'J}
ny, = |———L ’
! | J[In(Ly)]

(15-61)

Lz

Likewise, for my, we have

F%ln ¥ ¥ L)Ly E'-.,,} ]

— - 1 5-62)
\ F'_]n[l-:ll_.l (L1} ll
For given K,; values, the double sum in Equation 15-61 or 15-62 is a function only

of (L) and (L,). Therefore, we have

dlIn{L;)] (15-63)

' I:-.,»,;l'",.?
:mn ] = L—-—-'-'"*"‘ ) d[In(L, 1-[ +

5y
(L )] s S o
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d(ln } %) = ny, d[In{L,)] + my, d[In(L,)]

where } } denotes the double sum in the numerator of Equation 15-61 or 15-62. By
| cross-differentiation (Box 15-1) of Equation 15-64, we obtain

), ="t

Equation 15-65 is a basic linkage relationship. It shows that, at constant (L,),
a rise in (L) changes the number of moles of bound L, by an amount exactly equal to
the change in the number of moles of bound L, accompanying an increase in (L,)
at constant (L, ).

® Another equation for the linkage effect

Of the four variables ¥y, ¥,. (L), and (L,). only two are independent. Therefore, it is
possible to transform Equation 15-65 into alternative forms. A particularly useful
one involves the derivative (6¥, /€V,),,,, which by the chain rule (Box 15-2) is

(631 /6F )y = (67, /e[ In(L3) ]} 6 [In(L 2} ] /672 )i,

CROSS-DIFFERENTIATION
For a function f(x, y) of two independent variables x and y,

{I'I..I'. ¢ X}, dx +

and {. = (&/¢y),. The cross-differentiation relationship says that
(af/8y), = (df/ox),

This follows from the second-derivative relationships:

||-_|I |-. § |l~ = - ||._|I. I-'."-::|| T .lr
1
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Substituting Equation 15-65 into Equation 15-66, we obtain

(¥ /EV2hwy = (m/n)(EV, -"‘ﬂ'[]“{Ll}]hL;L{E[]ﬂ{Lz}],-"ET;}

The derivative with respect to ¥, on the right-hand side of Equation 15-67 can be

evaluated from the total differential for d¥,:

dy; = (87, /é[In(L )]}, d[In(L,)] + (72 /e[In(Ly)]),, d[In(L,)]  (15-68)

At constant ¥,, we have dy, = 0, and Equation 15-68 gives

[‘n'[l”': |-:”--t_'.'l_'1]|1..r o ':t-'[ln”- 1 ]-E-."q_-'":]u._-:-[’q [l[HI—E]']- '?'U“[LI ]]]I-: (15-69)

Substituting Equation 15-69 into Equation 15-67, we obtain

(cel) = -2

Pl

%

f"'.r-.')
02, Ly

%,

The quantity ndy, is the change in the number of occupied L, sites, and —ndy, =
d[n{l — ¥,)] is the change in the number of free L, sites. Therefore, Equation 15-70

Box 15-2 THE CHAIN RULE

':;nnsldET a system of four variables (f, g, x, and y) of which only two can be independent.
Choose x and y as independent variables. We then have

df = (df/ox), dx + (@f/dy), dy (A)
dg = (dg/dx), dx + (8g/dv), dy (B)

Because x and y are independent, they can be varied at will. Choose ¥ 1o be fixed, so that
dy = (; then divide Equation A by Equation B to obtain

(df/eg), = (&f/dx),/(dg/bx), (C)
(f/cg), = (&f/dx) (Ex/dg), (D)

Equation D is the chain-rule relationship, so named because the two derivatives on the
right-hand side of Equation D appear to form a chain.

i (15-67)

(15-70)
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| says that the expression on the left-hand side of the equat
number of free L, sites (or the number of males of L :
mole of L,. OFf course, the number released can be
release corresponds to binding}.
The derivative on the left-hand side of Equation 15-70
cessible. Figure 15-7 shows plots of 7, versus

1on is the change in the
1 released) upon binding of a
posilive or negative (negative

1S experimentally ac-
In{L,) for different values of In (L)

In(L,) = B-

“IniL,)=C '

In(L;} =D

Figura 15-7

Hypothetical plots of 75 versus In(L,) for
different values of In(L, ).

In(L,)

The ligand L, could be H*, for example, and the curves then would simply illustrate
the familiar observation that Iigund binding (L, in this case) 1s affected by pH. Clearly,
the horizontal difference between two adjacent curves divided by A[In(L,)] gives the
desired derivative. An analogous plot for the linked binding of oxygen and di-
phosphoglycerate to hemoglobin is given in Chapter 17 (Fig. 17-21). In that case,
L, = oxygen and L, = diphosphoglycerate.

® An additional relationship

In order to grasp concretely how the coupling between ligands takes place, it is
. 5 e AT ! : I !
helpful 1o extend our analysis in a somewhat different way. Let us denote by M all

species that have j bound L, molecules. Therefore,
MP) = ¥ (M) (15-71)

B
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and, using Equation 15-38,
(MY) = (Mg)(Ly) 3 [(L)Y/K,] (15-72)
i=0

We define the equilibrium constant K as
K, = (M@)(L,)/(MY) (15-73)
which corresponds to the reaction
MI% 4 Ly = MY (15-74)
Using Equation 15-72, we can write the equilibrium constant ﬁ'j in Equation 15-73 as

(Mg) ¥ [(L)YK o] HL,H
Rym (15-75)

) -
(Mg)(L2Y Y [(L,)/K,]

=0

After cancellations, we obtain

_ED [(Ly)/K o]

K

(13-76)

i

- _iu [{]_i]'_ 'F:é;J

If each microscopic constant for the binding of L, to M is distinct, then (by analogy
with Eqn. 15-54)
E L[Lllf"ﬁu] 3 “"EUJ’{[] + “*L]-’.kll][! + ‘LI]-"‘I_'-I i [1 + ':Lli'ktn-”.'-'lh'
=0
(15-77)

and

Y, [Ly)Y/Kio] = ([1 + (Ly)/kyy J01 + (Lyd/kya] -+ [1 + (Ly) k] (15-78)

1=}

where k,, denotes the microscopic dissociation constant for L, at site p, and the
subscript MY outside the brackets denotes that the microscopic constants pertain
to the species with j bound L, molecules. Thus, the microscopic constants for L,

155 BINDING OF TWO CIFFEREMT LIGAMDS: LINKED FUNCTIONS

binding in general can vary according to how many L, molecules are bound, Using

' Equations 15-77 and 15-78, we obtain for Equation 15-76

- -2 “ T {Lll-"k”}mm
Kj= Ky — i

I
l:-[l [1 + (L, j."'kif}p.qm

(15-79)

According to Equation 15-79, if one or more of the microscopic constants for L,

| depends on the degree of saturation with L,. then EJ. depends on (L,).

The linkage between L, and L, also can be seen by differentiating Equation

| 15-76 and making use of the results of Equations 15-52 and 15-53 to obtain

amg) 0 5 LR afin R,

d[In(L,)] d[In(L,)] dinL,)] (15-80)
or
|
dIINK,], o e v |
FTITTI)  A (15-81)

where n7{" is the number of molecules of L,bound to molecules of M that have |
bound L, molecules. Thus the expression on the right-hand side of Equation 15-81
gives the number of L, molecules released upon binding of j L, molecules to M.
However, according to Equation 15-79, if

l_[ :'I == lLJ’_—'.Ir'ilJHllll — ]_[ {I T [Ll}-'llk'll':lhl':-”‘
i=1

1= 1

then K, = E”J, and d[In K,]/d[In(L,)] = 0. Hence, linkage between L, and L,
binding occurs if the microscopic constants for binding of one ligand are influenced by
the amount of the other ligand that is bound.

These types of interrelationships between ligand bindings are well illustrated
in the case of hemoglobin and the Bohr effect. In this case, there is strong linkage
between oxygen binding and the binding of “Bohr” protons (see Chapter 17). Another
example is provided by the hydrolysis of ATP, where both reactant and prudulcts
can L‘umpitx with M E: * and H*. R. A. Alberty (1969) summarizes this interestng
system.

ar3
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15-7 LINKAGE OF LIGAND BINDING
FROM AN ENERGETIC VIEWPOINT

Coupling free energy

Gregorio Weber (1975) has used a different viewpoint for examining coupled ligand
equilibria, treating them in terms of energetic considerations, This treatment helps
us to think coneretely in terms of the energies involved in the linked reactions.

For the sake of illustration, consider a simple system in which a macromolecule
binds one molecule each of ligands L, and L,. The reactions are

M+ L, = ML, AG" (15-82a)
M+ Ly a2 LM AGY (15-82b)
LM+ L, # LML, AGY2) (15-82¢)
ML, + L. # L,ML, AGY1) (15-82d)

Standard free energies for each of the reactions are indicated on the right-hand side;
for example, AGY(2) 1s the standard free energy change for binding L, to the macro-
molecule saturated with L.

The free energies in Equation 15-82 are not independent, but are tied together
because

AGY + AGY(1) = AG? + AGY(2) = AGY(1,2) (15-83)
where AG"(1 2) is the standard free energy change for the reaction

M+ L, + Ly e LML, (15-84)

Figure 15-8 15 a diagram of these relationships. Note that there is no requirement that
AGY = AGY(2) or that AGY = AGY(1). From Equation 15-83, we have

AGY2) — AGY = AGY(1) — AG? = AGY, (15-85)

The meaning of this equation is similar to the linkage relationship of Equation 15-65
forthecase m=n=1. It says that the effect (in terms of free cnergy) of L, on the
binding of L, is the same as the effect of L., on the binding of L.,. This mutual effect
of one ligand on the other can be put in terms of a coupling free energy AGY ; (defined
in Eqn. 15-85).

Combining Equations 15-83 and 15-85, we obtain another expression for AGY;:

‘ AGY, = AGY1,2) — AGY — AGS _ {15-86)

e

o
pm+ pe, + g,
]

AGY
AGS
uy + g AGY1.2)
| 1] 1] =il : 1}
| Mg + My, Al + Al
- — s =
AGHT) |
| AGH2)
.l, Htm.. I L
i FI !
.-?Lij‘,‘; =0
Figure 15-8

Free energy diagram for a system of two ligands, L, and L;, and a macromolecule M. Each ligand has
one site on the macromolecule. Standard chemical potentials are designated u® with subscripts referring
lo particular species. | After G. Weber, Adv. Protein Chem, 29:1 (1975).]

Thus, AGY, is the difference between (a) the standard free energy for the overall
reaction M + L, + L; & L,ML,. and (b) the sum of the standard free energies for
the reactions M + L; & ML, and M + L, = L,M. Figure 15-8 shows the definition
of AGY,.

Clearly, if AGY, = 0, there is no interaction between ligands; binding of each
proceeds in a truly independent fashion. For other cases, the sign of the coupling
free energy determuines whether the interaction between ligands is cooperative or
antagonistic. If AGY, < 0, then binding of either L, or L, facilitates binding of the
other ligand. Conversely, when AGY; = 0, there is antagonism between the bindings
of the ligands.

There 15 still another way to look at the coupling free energy. To do this, we write
out the three relevant equilibria and their associated free energy changes:

Ly + Ly + M= LML, AGS(1.2) (15-87a)
L, + M = ML, AGY (15-87h)
L, +M=L,M AGY (15-87c)

Subtracting Equation 15-87b.c from 15-87a, we obtain
?"1L| 5 LH = KA o+ I-;!"aj:Ll _‘l.Gll :l.l -k .1”3" '\ﬂl:. = .'5"3';_. [Jj'EE'

Thus, AG?, is the free energy change for a kind of disproportionation reaction. This

reaction has an &q uilibrium constant K, given h.""

K. .= ¢ Y6UART - (LML, )(M)(ML,)(L;M) (15-89)

875
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From this analysis, it is clear that, if AGY, < 0, then K, > 1, and the species LML,
and M are favored over the partially saturated forms ML, and L,M. The reverse
holds true when AGY, = 0.

Effect of coupling energy on distribution of bound ligands

It is of interest to inquire what magnitude of AGY, is required to alter significantly
the distribution of L, and L, among the species ML, LoM, and LML, as compared
with the distribution when there is no coupling (AGY, = 0). For this purpose, we
define the fractional saturations ¥,, ¥, and ¥;4!

¥, = [(L:ML,) + (ML) [/(M)re (15-90a)
¥, = [(L.ML,) + (L;M)]/(M)y,, (15-90b)
Via = (LML, }/(M)r, 115-90c)

where (M)y,, = (M) + (ML) + (L,M]) + (L;ML,). Clearly, ¥, and 7, are the overall
fractional saturations with respect to L, and L., and ¥, is the degree of double
saturation.

Consider a situation where (L,) and (L,) are so adjusted that one-half of the L,
sites and one-half of the L, sites are filled. Under these conditions, it 1s easy to show
(see Problem 15-4) that

Ki:=T12/0(1/2) Tl:_]: (15-91)
and
¥iz = (2K1F1 + Ki5) (15-92)

Substituting Equation 1591 into Equation 15-89, we obtain
AGY; = —2RT In[2¥,:/(1 — 2¥,3)] (15-93)

From Equation 15-93 we can obtain a plot of AGY, versus 27, ; (Fig. 15-9). When
27,5 = 1, all of the bound ligands are in the form of L,ML,. When 2¥,; = 0, all of
the bound ligands are in the form of ML, and L,M. At the point 2§, ; = 1.3, we sec
that AGY, = 0(no coupling); this is the result expected for a simple unbiased :~111l1".~'~.llt?'»_l|
distribution of the ligands among ML, L,M, and L,ML,, and where ::;l-f.'h species 1s
present in equal amounts, Note that the plot in Figure 15-9 is symmetric about the
roint 2§, , = 0.5.

: "']'*h'l-a AGY, = —2 kecal mole™?, then 2¥,, is greater than Ll‘l.‘ch when AGY, =
_ 3 keal mole ™", then 27, , is over 0.9, In the latter case, over 907, ol the bound L,
and L, is in the form of the double-saturated species L,ML,. In this instance, ligand

Figure 15-8

Relation between degree of double saturation
2 \¥12) and free energy coupling (AG?,) of the
bound ligands, when the degree of saturation of
cach ligand (7,, ¥,) equals 0.5. [After G. Weber,
it Adv. Protein Chem. 29:1 (19751,

AGYs (keal mole™ ')

|
Es

binding proceeds largely from the species M to L,ML,, with little formation of ML,
and L,M. Conversely, when AG}; = +2 or +3 kcal mole™ !, most of the species al
half-saturation are the monoliganded forms ML, and L,M. Thus, a coupling energy
of only about +2 kcal mole™ ! is sufficient to cause a substantial skewing of the
distribution of hganded forms away from that obtained on a random basis.

Coupling free energies found in biclogical systems

l'able 15-1 gives several examples of values for the coupling free energy between
two different ligands that interact with a protein. Both positive and negative energies
are found, corresponding to antagonistic and cooperative effects, respectively. The

Table 15-1
Free energy coupling between ligands

AGY,
P bt Ligand couple! ikcal mole™ ")
Hemoglobin Oxygen, 2.3-DPG i .I,:
Hemoglobin Oxygen, IHF it
Serum albumin. bovine ANS, 3_:--.;|]h‘-r-|jn}n}'b1:nm:rltc | [.3
Pyruvate kinase Phosphoenol pyruvate, K t;
Pyruvate kinase K, Mn™" . it R I.'J."i
Pyruvate kinase Phenylalanine, Mn b 05
L - ¥ o i - -
Aspartate transcarbamoylase CTP. succinate :
Lactate dehvdrogenase, : _1.5
chicken heart NADH, oxalate :

—

CTP = cytiding inphosphate; 2 L.0OPG = 2 3-diphosphogly-

¥ [HP = imositol  hexaphosphate;

cerate; AMNS = l-anilinanaphthalene E-sulfonate. S
Soumce: After G. Weber, Adv. Protein Chem. 2911 (1973)
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energies fall in the range of 0 to + 2.5 kcal mole™ !, although it must be recognized
that the data are sparse and that further research may turn up a wider range of values.
At least in some cases, the coupling energies are large enough to produce quite pro-
nounced effects in the ligand saturation curves, as might be expected from the plot
in Figure 15-9 (and as shown in Chapter 17, where we discuss ligand interactions of
aspartate transcarbamoylase and hemoglobin),

15-8 INTERACTION OF LARGE LIGANDS
WITH LATTICELIKE CHAINS

In considering ligand binding equilibria in biological systems, a case ol great interest
is the association of large ligands with latticelike chains, such as double-helical nucleic
acids. Large ligands include polyamines (such as spermine and spermidine), histones,
DNA-unwinding proteins, and large drugs such as actinomycin D. These systems
have special statistical features that are quite distinct from the situations described
thus far. Moreover, they are amenable to a rather straightforward treatment, which we
present along lines developed by 1. D. MeGhee and P. H. von Hippel (1974).

The homogeneous lattice: statistical features

Consider first 2 homogeneous lattice constructed of N identical repeating units, For
example, in a helical nucleic acid, the repeating units could be phosphate groups or
sugar units. Assume that one ligand L occupies [ consecutive lattice units; saturation
of the lattice with L results in N/l bound ligand molecules per lattice. The ligand 15
assumed to be able to occupy any [ consecutive lattice units, Therefore, in the com-
pletely naked lattice, there are N — | + 1 potential sites that the first bound ligand
can occupy. Thus, at the beginning of a ligand titration there are many more potential
sites than the N/I sites that can be occupied at saturation. In this feature, this situation
contrasts sharply with our earlier treatment of identical and independent sites
(Eqn. 15-12), in which the number of free sites (n) on M, corresponds to the number
that are filled on M. It is this aspect of the lattice that gives rise to a Scatchard plot
markedly different from those obtained with the simple system of Equation 15-1.1.

Figure 15-10 illustrates the statistical complexities of the lattice for the case of
N = 12 and | = 3. Let v represent the moles of L. bound per mole of lattice. At satura-
tion v = N/l = 4 bound ligand molecules per lattice. At the outset of titration, how-
ever, there are N — | + 1 = 10 potential sites per lattice, The figure shows that a
variety of microspecies are generated after v = 2 bound ligands per lattice. Owing 1o

the arrangement of ligands on the lattice, one species can accommodate no additional
ligands, whereas others can take on two more. All of these species are in equilibrium
with the free-ligand concentration, and they must be accounted for in any attempt 1o
calculate the shape of the binding curve. Of course, as binding proceeds beyond
v = 2, there must be a continual redistribution of the ligand on the lattice until the
final state of v = 4 1s reached.

Figure 15-10

some of the microspecies for the case of two ligands bound to
the lattice, with/ = 3and N = 12

Calculation of ligand-binding behavior

To "*'_'*”ﬂ'h_“'—‘ the ligand-binding behavior of the lattice, we start with the basic
relationship

v= Ng{L)k (15-94)

ﬂ.ﬂ-']n:n: N 1s the average number of free ligand sites of length [ per lattice, and k is the
|Inlrin.uiu: microscopic dissociation constant. Equation 135-94 follows directly from the
definition of k. Qur main task is to calculate an expression for Ny,. We do this by first
c;iEculéﬂing the probability p, that, starting at any position in the lattice, | consecutive
lattice units are unoccupied with ligand; this probability times N gives the average
number of free ligand sites of length I per lattice.

The probability p, can be written as

pya pyphe ! (15-95)

where p, is the probability that a lattice unit selected at random 15 unoccupled, and
P 5 the conditional |-|r|_!l|_'l,'J.|_'I|Jii[_"|' that a gi"ﬂll free unit 15 [ollow ed t'l‘:'n another free
unit. Because the fraction of occupied lattice units is v//N, the fraction of unoccupied
ones 1s 1 — vI/N; therefore, p, (the probability of occurrence of a bound unit) equals
vl'N. and pr=1—vI/N.

The conditional probability pg 15 also the fraction of the total free lattice units
that are preceded by free units. This is [(total number of free lattice units) minus
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(number of free lattice units that are preceded b

- ¥ an occupied unit)] divided by
(total number of free lattice units): L 1

Pre = [Pe — (Po/Dpec )y (15-96)

where p,; is the conditional probability that a free lattice unit follows the last ([th)
segment of a bound ligand, and p,/l is the probability that a bound lattice unit is
occupied by the last (Ith) segment of the ligand. Because there is no interaction be-
tween bound ligands, it is clear that pg = py: with this relationship, we can rearrange
Equation 15-96 to obtain

Pee = Po/(pe + Pull) (15-97)
or
Prr = lﬁ : (15-98)
1 —{l = 1p/N

We are now ready to obtain an expression for N

X e 1 — IN T" :
N. = No, = N(l — Iw/N : o] (15-99)
g == ek SIS ]{._1 S0

Equation 15-99 is obtained by using Equation 15-95 for p, and the expressions for
p and pyp. Substituting Equation 15-99 into Equation 15-94, we obtain

| Ml = iy S S P e
| V(L) = "'”{h S 1Y | (15-100)

Equation 15-100 is the desired result. (Note that we 1gnored end effects in deriving
this equation so that, strictly speaking, it i1s valid only for an infinite lattice. However,
as we show in a subsequent section, Eqn. 15-100 affords a sufhiciently accurate
description for many systems of experimental interest involving finite lattices.)

Nonlinear Scatchard plots resulting from statistical effects

Equation 15-100 may be compared with the corresponding equation (Egn. 15-29) for
binding of L to n identical independent sites in which the “overlap” effect is not
operative. When | = 1, Equation 15-100 reduces to Equation 15-29, as expected.
(Note that, when [ = 1, the n of Eqn. 15-2% equals the N of Eqn. 15-100; in general,
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n = N/I.) However, when [ > 1, then the last factor in Equation 15-100 is always less
than unity and varies with v. This gives rise to marked nonlinearity in Scatchard plots
of v/(L) versus v: it also means that plots for | > | always fall below the plot for the
case { = 1.

Figure 15-11 shows some calculated Scatchard plots for values of | between |
and 20. with & = 1 M. For ease in comparing the plots, the abscissa is given in units

Nk

ik Flgure 15-11

o ..,"l =1 ‘ 3

s b Seatchard plots of lgand Birding 0o a latlice
lor various values of [ with k = 1 M. [After

J. D MeGhee and P. H. von Hippel, J. Mol
Biol. 86469 (1974).]

0

of 1/1. In all cases, complete saturation is achieved when v = n = N/l However, as |
increases, the concave-up curvature of the plots becomes increasingly apparent. This
happens because the lattice entropically resists being saturated, with the resistance
becoming more pronounced as [ increases. Thus, the statistically large number of
microstates that are gn:m:m[l:d at a given degree of partial saturation gi‘-'n.'i-i d SIrong
entropic contribution to the free energy. This is lost, of course, as binding proceeds
to the completely saturated lattice, which is comprised of only one microstate. As a
result, for large ligands, saturation is not practically feasible; for example, with | = 10
to 20, (L) must change by 10-fold to 100-fold in order to increase the lattice saturation
merely from 80%, to 907,

The v intercept of the Scatchard plot is N/I, which corresponds to n in Equation
15-29, However, the v/(L) intercept is Nk, which is not the same as n/k, the imn:ru_cp[
given by Equation 15-29. This distinction 1s important lo recognize when Ut.'l'lil.ﬂ'lli'lg
parameters from Scatchard plots involving ligand binding to latticelike chains.

Some results on a real system

Figure 15-12 shows some actual data. This figure gives the Scatchard plot for bind-
ing of an e-dinitrophenyl (--DNP) oligomer of lysine, s-DNP-Lys—(Lys)s, to the

aa1




Figure 15-12

Scatchard plot for binding of e-DNP-Lys—{L¥s)s
to the poly (rlj:poly (rC) helix. Points are
experimental values. The solid curve 15 calcu-
lated from Equation 15-100 with | = 7.8 and

k = 7.1 pm. Drashed curves give calculated
results with k held fixedand | = Tor | = 9.
The arrow denotes the point of lattice satura-
tion. [After J. D. McGhee and P. H. von
Hippel, J. Mal. Biol, 86:460 (1974).]

MY

w/(L) (mm )

poly(rl): polyirC) helix. The solid curve is calculated from Equation 15-100, with
| =178, and k = 7.1 um. The arrow denotes the point of complete saturation. An
excellent fit to the data is obtained. The dashed curves show the sensitivity of the data
to variations in | with k held fixed. It is clear that a change of only about + 1 from the
best-fit value results in a marked departure of the calculated from the observed curve.

If a mixture of ligands bind to the lattice, then Equation 15-100 may be extended
in a straightforward manner to handle this situation. Indexing by i the parameters
associated with each hgand, we obtain

T £ L £2. 5 LI 3, R A0 iy (15-101)

This equation can be used when separate means are available to measure the binding
of cach ligand. For example, if binding to a helix of two different polyamines (such as
spermine and spermidine) is studied, the use of a '*C label for one and a *H label for
the other would be appropriate in a dialysis experiment. In other situations, ligands
with distinct optical bands might be of use.

Lattices of finite length and end effeclts

Strictly speaking, Equations 15-100 and 15-101 are valid only in the limit that N
goes to infinity. This is true because we ignored end efiects in the derivation. We can
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estimate the correction factor for any finite value of N. For this purpose, let v/N = 1,
be the saturalion density of a lattice of N units, and v, be that for a lattice with an
infinite number of units. Equation 15-100 then can be written as

1=l f 1=10p T_1
) oof W) B LN i
ool e 57 (i—H—Hr. (15-102)

i

With the mfinite lattice, each lattice unit has an average saturation density of ¢, :
for the finite lattice, this is true except for the | — 1 units at each end, which can have
an average density of less than v . In the limit of (L) — oo, it is obvious that vy/1,
approaches the ratio (integral part of N/I)/{N/I). For example, if | = 3 and N = 100,
then vy/v, = 0.99. At the other extreme,

ey = [N =1+ 1)/N]u, as (LY—0 (15-103)

where N — [ + 1 is the number of potential binding sites for a ligand of length [ in
the naked lattice. Thus, with [ = 3 and N = 100, we have v,/v. = (1L.98. From these
and similar calculations, we conclude that, for values of N/I = 30, Equation 15-100
should be applicable to finite chains to an accuracy greater than that achievable by
experiment.

Ligand-ligand interactions

In some cases, binding of a ligand to a lattice chain can be cooperative. This 1s true
for some of the DNA-binding proteins. These situations too can be handled with the
formalism we have developed. For this purpose, we must introduce a parameter that
accounts for the ligand-ligand interaction on the lattice. Consider two partially
saturated lattice microspecies with identical numbers of bound ligands. Moreover,
igands are exactly the same, except that a

we assume that the distributions of these _ |
pair of isolated (not contiguous) ligands on lattice A are made contiguous on lattice
B. so as to introduce only one new ligand-ligand interaction on lattice B. The lattice

equilibrium is A = B, where

w = (BJ(A) (15-104)

— gl d e Eaguati 5-100, we obtamn
Proceeding along lines similar to those used to derive Equation 1. = :

'.- N(1 — Iv/N) {20 + 101 = W/N) + v/N = E"']"" (1= (- T Rx]:
D~ %\ Ze-00-MM 2= W)
(15-105)
where

R=1{[1— ¢+ ."'r'}l + (deov/ N1 — /N2 (15-106)
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(For a more complete derivation, see McGhee and von Hippel, 1974.) |
For the case of @ = 1, Equation 15-105 can be shown to reduce to Equation
15-100. When o < 1 (anticooperative binding), Scatchard plots according to Equa-
tion 15-105 fall below those of the noninteracting case (Eqn. 15-100). When @ = 0
(infinite anticooperativity), Equation 15-105 reduces to Equation 15-100 for non-
interacting ligands with a length of I + 1 segments. When o = 1, the Scatchard plots
are an:e-duwn_ and they fall above the corresponding noninteracting case. Figure
15-13 shows some plots for various values of @ with [ = 1 and k = 1 m. Because these

25 N
20N
Figure 15-13
Scatchard plots for ligand hinding o o homog- _
enous latrice, for k = 1™, and | = 1, with = iz X
various vilues of the copperativily parametcr o
ew. [After J. D. McGhee and P. H. von Hippel, |
J. Mol. Biol. 86:46%9 {1974} | 10N
05 N
0 05 N 1.ON
,.
curves are drawn for [ = 1, these is no “overlap” effect mixed with the cooperativity.

As shown earlier (Fig. 15-11), the effect of increasing | is to introduce an anticoopera-
tive feature into the binding. In a case where @ > | and [ > 1, the resulting curve
obviously will be a compromise between the two parameters.

The v/(L) intercept of the Scatchard plot of Equation 15-105 is N/k, the same as
that for the noninteracting system described by Equation 15-100. Moreover, the v
in!crccpl iz still N/I. However, when @ = 1, lathice saturation at AnYy gi-.,.;n value of i
clearly is easier to achieve than in the noninteracting case (w = 1) where entropic
effects inhibit saturation.

This treatment of ligand binding to a homogeneous lattice is applicable to a
number of situations that are encountered 1n practice. Although another approach
must be used to handle heterogeneous lattices, which have more than one type of
ligand combining site, the above treatment does indicate that nonlinear regions in
Scatchard plots can be explained in significant measure by the “overlap” effect. When

PRODLEMS

effects beyond those predicted by Equation 15-100 or 15-105 are observed, lattice
heterogeneity must be considered. This requires a further extension of the theory.
In Chapter 23, where ligand binding to nucleic acids is considered further. we

develop a different kind of treatment of ligand binding to lattices, based on matrix
methods.

— e

Summary

Ligand interactions are widespread in biochemical systems, and a rich and useful
formalism has developed for treating the equilibrium properties of the diversity of
systems that are encountered. In such treatments it is important to keep firmly in
mind the distinction between microscopic and macroscopic constants, and associated
statistical features. The simplest systems involve binding of a ligand to a single class
of identical, independent sites. These can be analyzed conveniently by a Scatchard
plot. An extension of the Scatchard type of analysis can be useful for treating multiple
classes of independent sites.

In many biological systems, interactions occur between binding sites for a single
kind of ligand. For example, cooperative interactions commonly are found, and they
may be treated by established procedures. Another type of interaction 1s that between
binding sites for different kinds of ligands that bind with the same macromolecule.
In this case, particularly interesting and useful linkage relationships describe the
interaction. The interaction energy that characterizes the linkage commonly 15 on
the order of 0 to + 2.5 keal mole™ ",

Another case of considerable interest is the interaction of large ligands with
latticelike chains, such as helical DNA. In such systems, statistical, entropic effects
'|:||u_'_.,' A n1;1j|:'|.r role in .|_‘||3|:|'_"T]'|_'|'i[1]-1'|g the character of the observed hII.'IL{iHjE.’ EL]ll'i[ibl'iﬂ.

Problems

15-1. The relationship shown by Equation 15-20 1s useful in many calculations. Prove this
relationship.

5-2. A ligand binds to four sites on a macromolecule. The apparent macroscopic dissociation
constants K. and K, are identical (within experimental error). ISII.h::rL' an interaction
energy between sites 2 and 37 If not, why not? If s0, calculate the interaction energy.

15-3. A macromolecule has six sites for the ligand L. An mvestigator 15 H.h[e S [!'hr;:
of the macroscopic dissociation constants for ligand binding, K,, K4, and K. He hinds
that K. — 15K.. and K, = 8K, He then claims that this result clearly demonstrates
L [ ? m— - I. LS

negative (anticooperative) site-site interactions, and that the Scatchard plot for this
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system is surely concave-up. A critic disagrees and says that the limited data indicate
there are no site-site interactions, and he even ventures to predict relative K, values for
the other constants, Who is right, and why? Is it possible to predict the other K, values?
If 50, make the predictions. If not, explain why none can be made,

15-4. Consider a case in which two ligands, L, and L., bind to a macromolecule. Let half of
the L, and hall of the L, sites be filled. Using Equations 15-89 and 15-90, derive Equa-
tions 15-91, 15-92, and 15-93

15-5. The relationship shown by Equation 13- 54 15 a simple connection h:l;v..:en miCroscopic
dissociation constants, k;, and macroscopic dissociation constants, K, defined in Equa-
tion 15-51. Establish the validity of Equation 15-54 for the case of three microscopie
constants, k,, k;, and ks, and of three Macroscopic constants, K,, K, and K, and
reflect on the reason for the particularly simple form of Equation 15-34,
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16

Kinetics of ligand interactions

16-1 BIOCHEMICAL KINETIC STUDIES

The study of ligand interactions from an equilibrium standpoint (Chapter 15) gives
insight into thermodynamic features and general mechanistic aspects of the ligand
reactions. However, equilibrium measurements alone are not sufficient for a detailed
mechanistic understanding of ligand reactions. In general, there are many possible
reaction schemes that can account for a given set of thermodynamic data. These
different schemes often can be sorted out by studies of the dynamics (or kinetics) of
ligand reactions. Such investigations not only permit identification of reaction path-
ways that are followed, but they also can give g uantitative insight into the time scale
of elementary processes; from this information, it is possible to deduce a clearer
picture of events at the molecular level.

All biochemical systems exhibit dynamic behavior. In many cases, the pliys-
iological property itself is in essence a dynamic property, as in enzyme catalysis, active
0N transport across membranes, 5|__Pf|_'\1_.,|_|__"||'|_ and activation of gene expression, and
so on. For this reason, studies of the dynamic behavior of biochemical systems have
been of great interest for many years. ;

In this chapter, we discuss some of 1I:¢ essential features :'nlllf.m::ltc systems.
Many of the ideas and equatior : have applications in other chapters
ofthe book. For example. in Chapter 21, where |'|1LL|‘| inisms for the folding of proteins
are discussed, kinetic aspects are of greal importance. In the [nlim-.-][_u, discussion,
much of the treatment centers around enzymatic re action systems, which have been
investigated in more depth from a kinetic viewpoint than has any other class of
_ Also. as a concrete example of how an integration of kinetic

BeT

biochemical SVSIEIms
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