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1 Introduction

This chapter surveys modern methods for measuring the hydrodynamic properties of biological
macromolecules and for calculating the hydrodynamic properties of useful models for biomolecules.
Hydrodynamic properties are quantities like sedimentation and diffusion coefficient, rotational re-
laxation time, intrinsic viscosity, and viscoelastic relaxation time. They enable one to determine
how rapidly molecules translate and rotate in solution, and how they influence the steady-state
and time-dependent viscosity of solutions. These measured properties, in turn, when interpreted in
terms of suitable models, give us information about the molecular weight, size, hydration, shape,
flexibility, conformation, and degree of association of biological macromolecules.

Like so much of science, hydrodynamics has a long history, but has been dramatically changed
by recent advances in experiment, theory, and computation. Classic textbooks tell of the exper-
imental work of Fick in 1855 on diffusion [1], Svedberg in the 1920s on sedimentation [2], and
Poiseuille in 1846 on viscosity [3]. Theories for simple shapes such as spheres and ellipsoids were
worked out by Stokes (1847) [4], Einstein (1906) [5, 6], and Perrin (1936) [7, 8]. However, re-
cent experimental developments such as dynamic laser light scattering, nanosecond fluorescence
depolarization measurements, fluorescence recovery after photobleaching, fluorescence correlation
spectroscopy, pulsed field gradient NMR, and improved analytical ultracentrifuge design have made
measurements of hydrodynamic properties more convenient, precise, and refined. At the same time,
development of new theoretical and computational tools have enabled calculation of the properties
of complex, realistic molecular models.

∗Copyright 2000 by the author

1



2 2 FRICTIONAL COEFFICIENTS

In this chapter we present these new techniques, along with the older but still useful ones,
in a way that we hope is suitable for an audience of students and researchers in biophysics in
biochemistry. We forego the heavier experimental and mathematical details and focus on physical
principles, results, and applications. We also provide links to Web-based resources and computer
programs that can be used to calculate hydrodynamic properties of atomic-level structures.

2 Frictional coefficients

When a particle moves in a fluid, either under the influence of an applied force or torque, or due to
Brownian motion, it experiences frictional resistance. The proportionality between particle velocity
and frictional resistance is the frictional coefficient.

The translational frictional coefficient ftis the proportionality constant between the velocity
w̌ith which a particle is moving, and the frictional force Ff which resists that motion:

Ff = −ftv, (1)

where the minus sign arises because the frictional force opposes the particle motion. The motion is
produced by an applied force (e.g. centrifugation or electrophoresis) or by a concentration gradient,
as in diffusion.

Likewise, the rotational frictional coefficient fr is the constant of proportionality between the
angular velocity ω of the molecule, and the frictional torque Tr resisting rotation:

Tr = −frω, (2)

where the rotation may be produced by an applied electric or hydrodynamic flow field, or by
diffusion of molecular axes.

Ff v

R

Trω

Figure 1: Frictional force and torque exerted on a translating and rotating body

2.1 Viscosity of water

All frictional coefficients depend on the viscosity of the medium in which the particles are immersed.
The viscosity η is defined as the force per unit area needed to maintain unit velocity gradient
between two parallel surfaces moving relative to one another in the fluid. The cgs units of η are
therefore dyne-sec/cm2, or poise in honor of Poiseuille who investigated the fundamental laws of
viscous flow in tubes [3].

Most biopolymer experiments are conducted in water or dilute aqueous buffers. The viscosity
of water is a strongly decreasing function of temperature. Hydrodynamic results are commonly
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adjusted to 20◦C, at which temperature the viscosity of water is 0.01002 poise, or 1.002 centipoise
(cp). Values of η for water at other temperatures are tabulated in the CRC Handbook of Chemistry
and Physics and are closely approximated by the equations

log10 η =
1301

998.333+ 8.1855(t− 20) + 0.00585(t− 20)2
− 3.30233 (3)

in the range 0 ≤ t ≤ 20◦C, and

log10

η

η20
=

1.3272(20− t)− 0.001053(t− 20)2

t+ 105
(4)

in the range 20 ≤ t ≤ 100◦C, where t is the Celsius temperature.

2.2 Spheres

We will discuss in the following sections the experiments by which these frictional coefficients are
measured, but it will be helpful now to have a sense of how they depend on molecular size and
shape for the simplest shape, a sphere, and for other model shapes. A sphere has radius R and
volume V = (4/3)πR3. It has translational and rotational frictional coefficients

ft = 6πηR (5)

and
fr = 8πηR3, (6)

Eq. 5 is known as Stokes’ law, and the hydrodynamic radius R is often called the Stokes radius.
Note that translational friction varies only as the first power of the molecular size, and therefore
is much less sensitive to molecular dimensions than is rotational friction, which varies as R3 or
molecular volume.

2.3 Ellipsoids of revolution and cylinders

Other rigid models of macromolecules, being nonspherical, have more complex properties than
spheres. The ellipsoid of revolution model is widely used because its properties can be calculated
exactly [7, 8]. This is the generalization of a sphere, obtained by rotating an ellipsoid about one
of its axes. The axis about which rotation occurs is called the symmetry axis, and its half-length
(analogous to the radius of a sphere) is a. The half-lengths of the two other axes are equal to b.
The axial ratio a/b = p and the volume V = (4/3)πab2, an obvious generalization of the result for
a sphere. Oblate ellipsoids are pancake-shaped, with p < 1. Prolate ellipsoids of revolution are
football-shaped, with p > 1. They are often used as models for cylindrical rods, giving reasonably
accurate results if length and volume of the two objects are equated (2a = L, bell =

√
3/2bcyl).

However, since cylinders do not have gradually narrowing ends, their frictional resistance, especially
to rotational motion, is somewhat different from that of ellipsoids. Therefore, numerically accurate
equations for cylinders have been obtained.

Translational and rotational friction coefficients for ellipsoids and cylinders are listed in Table
1. They are expressed as ratios relative to the frictional coefficients of spheres of the same volume.
That is,

Ft = ft/6πηRe (7)
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and

Fr = ft/8πηR3
e. (8)

The equivalent radii Re of the spheres of equal volume are given in the first row of Table 1. For
ellipsoids, q = 1/p; for cylinders, p = L/2b where 2b is the diameter.

In translation, the frictional coefficients are different for movement with the long axes parallel
or perpendicular to the direction of motion. However, since what is almost invariably measured is
the average over all orientations, only the average is given for Ft. In rotation, Fr(i) is the frictional
coefficient for rotation around the ith axis (i = a or b).

Table 1: Translational and rotational frictional coefficients of ellipsoids and cylindrical rods relative
to spheres of the same volume [7–11]

Prolate ellipsoid Oblate ellipsoid Cylinder
Re (ab2)1/3 (ab2)1/3 (3/2p2)1/3(L/2)

Ft

√
1−q2

q2/3 ln 1+
√

1−q2

q

√
q2−1

q2/3 arctan
√

q2−1

(2p2/3)1/3

ln p+γ , γ = 0.312+ 0.565
p + 0.100

p2

Fr(a)
4(1−q2)

3(2−2q4/3/Ft

4(1−q2)

3(2−2q4/3/Ft
0.64

(
1 + 0.677

p − 0.183
p2

)
Fr(b)

4(1−q4)

3q2[2q−2/3(2−q2)/Ft−2]
4(1−q4)

3q2[2q−2/3(2−q2)/Ft−2]
2p2

9(ln p+δ , δ = −0.662 + 0.917
p − 0.050

p2

2.4 Random coils

A random coil has on average a spherical domain, so it is not surprising that it behaves hydrody-
namically like a sphere with effective hydrodynamic radius closely related to its radius of gyration
[12]. For a random coil with N bonds of length b, that is not swollen by excluded volume,

ft = 6πη
3
√
π

8

(
b2N

6

)
= 6πη× 0.665 < R2

g >
1/2, (9)

which shows that the effective hydrodynamic radius is about 2/3 of the radius of gyration< R2
g >

1/2.
A similar relation holds for coils with excluded volume, but the numerical factor varies slowly with
the excluded volume. Because of its flexibility, a random coil does not undergo a defined (rigid)
rotational motion. The equivalent of a rotational relaxation time is the relaxation time τ1 for the
longest normal mode of internal motion of the coil.

2.5 Oligomeric arrays of spheres

Many proteins are effectively modeled as compact arrays of spheres. A tabulation of translational
and rotational friction coefficients for various geometries is given in Table 2.
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Table 2: Translational and rotational friction coefficients for arrays of n identical spheres in the
indicated geometries, relative to ftand frfor the spherical monomer. 33 corresponds to rotation
around the axis of highest symmetry, and 11 is for either axis perpendicular to it. [13]

n Geometry Ft Fr(11) Fr(33)
1 Sphere 1.00 1.00 1.00
2 Dimer 1.38 3.79 1.77
3 Triangle 1.61 4.24 5.71
3 Linear 1.71 9.26 2.52
4 Square 1.82 6.29 8.40
4 Tetrahedron 1.77 6.06 6.06
4 Linear 2.00 17.86 3.27
5 Pentagon 2.04 9.01 11.90
5 Bipyramid 1.92 8.47 6.41
6 Hexagon 2.25 12.35 16.39
6 Octahedron 2.02 8.70 8.70
6 Trigonal prism 2.07 10.00 9.17
8 Cube 2.31 13.33 13.33

3 Experimental determination of hydrodynamic properties

3.1 Sedimentation coefficient

Of the various hydrodynamic techniques, the most widely used is sedimentation. Another term is
centrifugation; and if the centrifuge operates at high speeds, ultracentrifugation [14]. We distin-
guish two types of sedimentation experiments: those in which the velocity of molecular motion is
measured, and those in which the centrifuge runs until equilibrium is reached and one measures
the unchanging concentration distribution. In this chapter we consider only sedimentation velocity,
since it depends on the translational frictional coefficient.

In a sedimentation velocity experiment, one measures the velocity of the macromolecular solute,
dissolved in solvent, in response to a centrifugal field. It is conventional in a multicomponent
system to denote water as component 1, polymer solute as component 2, and other small molecular
solvent components (salts, buffer, etc.) as components 3,... Consider a particle of mass m, spun
with angular velocity ω at a distance r from the axis of rotation. The molecular weight of the
polymer is M2, so m = M2/NA, where NA is Avogadro’s number. If the specific volume (more
rigorously, the partial specific volume) of the polymer is v2 cc/g, and the density of the solvent
is ρ g/cc, each polymer molecule displaces a mass of solvent mv2ρ, so its effective buoyant mass
is M2(1 − v2ρ)/NA. The angular acceleration is ω2r (sometimes expressed a a multiple of g, the
gravitational acceleration, equal to 980 cm/sec2), so the centrifugal force on the particle is

Fcent =
M2

NA
(1− v2ρ)ω2r. (10)
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This produces a velocity v = dr/dt, which is resisted by a frictional force

Ffr = −ftv = −ft
dr

dt
. (11)

In the steady state, the sum of these forces is zero, so one can define the sedimentation coefficient
S as the velocity per unit acceleration:

S =
dr/dt

ω2r
=
M2(1− v2ρ)

NAft
. (12)

The first of these equalities allows determination of S in terms of measurable quantities. The second
enables determination, from S and the buoyancy factor, of the quotient of molecular quantities
M2/ft.

The units of S are seconds (s). Generally values of S are in the range 10−13 to 10−10 s. To
eliminate these small numbers, a sedimentation coefficient of 10−13 s is given the value of 1 Svedberg
(S), after the inventor of the ultracentrifuge. The proper unit of angular velocity (ω) is rad/s, but
centrifuge speeds are most commonly stated in revolutions per minute, rpm. The conversion factor
is 1 rpm = 60/2π rad/s. When doing calculations, it is important to work in consistent units.

The sedimentation coefficient is determined experimentally by measuring the position, as a
function of time, of the band of solute material initially layered on top of the buffer solution, or of
the midpoint of the boundary formed by redistribution of the components of the initially uniform
solution in the centrifugal field. Rearrangement of the first equality in eq. 12 leads to

drm

rm
= Sω2dt (13)

which when integrated yields
ln(rm/r0) = Sω2t, (14)

where rm is to be interpreted as the midpoint of band or boundary at time t, and ro is the starting
position at t = 0. Thus S is obtained from the slope of a plot of ln rm vs t, divided by ω2.

Various means are available to measure concentration distributions in sedimentation. In the
modern generation of analytical ultracentrifuges, the concentration across the cell is monitored
optically during the course of the run. For nucleic acids, which absorb light strongly at 260 nm,
measurement of A260 as a function of r allows determination of the concentration distribution at
quite low concentrations. For proteins, measurement around 280 nm or in the absorption band of
some chromophore also allows sensitive detection. In older instruments, and even today for some
purposes, refractive index measurements using schlieren or Rayleigh interference fringe techniques
were employed. The concentration distribution in a preparative ultracentrifuge can be determined
after a run is complete, by withdrawing and measuring solution from successive layers in the
centrifuge tube. In this case, if the polymer has been radioactively labelled, or if it has some
enzymatic or biological activity, very low concentrations can be detected.

There are numerous details, inappropriate for discussion here, that are important to the suc-
cessful execution and interpretation of sedimentation experiments. They concern matters such as
diffusional broadening, concentration dependence, and interaction of charged molecules. These are
treated in monographs, manufacturer’s literature, and Web sites.
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3.2 Translational diffusion coefficient

Molecules in solution undergo brownian motion under thermal bombardment from their surround-
ings, which causes them to move even when not subject to an external force. This thermal motion,
called diffusion, is random in magnitude and direction, but can be measured by the techniques
described below. Diffusion is also observed when a concentration gradient is set up in solution or
when a barrier between solutions at two different concentrations is removed. The tendency toward
equalization of concentrations is attributable at the macroscopic level to a gradient of concentration
or chemical potential; but at the molecular level it can also be understood as the random motion of
molecules, with more molecules in the concentrated region of solution available to move randomly
into the more dilute region.

The rate of brownian motion or evening-out of concentration gradients is proportional to the
translational diffusion coefficient Dt, which in turn is inversely proportional to ft. In this section
we summarize the basic laws characterizing translational diffusion, and describe some of the most
important modern techniques whereby Dt can be measured.

We note that molecules also undergo rotational brownian motion. This will be discussed later.

3.2.1 Fick’s laws of diffusion

At the macroscopic level, two basic equations describe the change of concentration as a function of
position and time under the influence of translational diffusion. The first is Fick’s first law, which
states that the flux J of matter across an imaginary surface per unit area and per unit time is
proportional to the concentration gradient and the diffusion coefficient:

J(x, t) = −Dt

[
∂c(x, t)
∂x

]
t
, (15)

where we have written the one-dimensional equation for simplicity. Note that this equation states
that a positive flux occurs from high to low concentration.

A

x x+dx

J(x) J(x+dx)

Figure 2: Fluxes into and out of an infinitesimal volume element.

If we consider an infinitesimal volume element dV in solution of cross-sectional area A and
thickness dx located at x, conservation of mass requires that the difference between the flow of
matter into the element and the flow out must equal the amount accumulated within the element:

[J(x, t)− J(x + dx, t)]A =
[
∂J(x, t)
∂x

]
t
Adx =

[
∂c(x, t)
∂t

]
x
dV, (16)
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where the middle equality comes from expanding J(x + dx) in a Taylor’s series about x. Since
dV = Adx, we may substitute eq. (15) into eq. (16) to obtain Fick’s second law:

[
∂c(x, t)
∂t

]
x
= Dt

[
∂2c(x, t)
∂x2

]
t

, (17)

where we have assumed that Dt is independent of c, and hence independent of x.
The solution of eq. (17) for the initial condition in which there is a very narrow (delta function)

spike of material c0 at x = x0, and zero concentration elsewhere, is

c(x, t) =
c0√
4πDtt

e
− (x−x0)2

4Dtt . (18)

-0.1 -0.05 0 0.05 0.1

c(x,t)

x. cm

10 s

100 s

1000 s

Figure 3: Concentration profile from an initial spike at x = 0 after 10, 100, and 1000 s, for a protein
with typical diffusion coefficient D = 6× 10−7 cm2/s.

3.2.2 Frictional resistance and brownian motion

Given its physical meaning, it seems reasonable that Dt should increase as the thermal energy of
the solution increases, and decrease with the frictional resistance to translational motion. In fact,
as Einstein showed in 1906, the relation is

Dt =
kBT

ft
. (19)

An important physical consequence of Fick’s second law relates the mean-square distance dif-
fused in time t to the diffusion coefficient:

< x2 >= 2Dtt. (20)
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This equation can be derived from the solution to Fick’s second law for an initial sharp spike of
concentration located at x0 = 0 (see eq. (18)), or by probabilistic considerations of molecules
in regions of different concentrations moving randomly along the x-axis. The two- and three-
dimensional analogs of eq. (20) are

< ρ2 >= 4Dtt (21)

and
< r2 >= 6Dtt, (22)

respectively. The dependence of average distance traveled on the square root of the time means
that diffusion is an efficient way of traversing short distances, on the order of a membrane thickness
or the interior of a small cell, but is very inefficient for traversing longer distances.

3.2.3 Diffusion across a porous barrier

A classical method of determining Dt, particularly useful for small molecules such as drugs, is
to place different concentrations c1 and c2 on opposite sides of a porous barrier of thickness ∆x
and area A. The molecules can either be radioactively labeled or have some optical property that
enables measurement of their concentrations as a function of time. The solutions on the two sides
of the barrier are stirred to disrupt stagnant boundary layers and make concentrations uniform on
each side. The amount of material ∆m that flows across the barrier in unit time is given by Fick’s
first law, eq. (15) in the finite difference form

∆m = JA = −ADt
∆c
∆x

(23)

where ∆c = c2 − c1. Since A and ∆x are generally not measurable accurately, the apparatus is
calibrated with a compound of known Dt to obtain A/∆x. Then measurement of ∆m for the
unknown enables calculation of its diffusion coefficient.

3.2.4 Broadening of sedimentation boundaries

In a sedimentation velocity experiment, the boundary will broaden with time due to diffusion as it
moves down the cell. Exact analysis of the broadening is complicated by the radial sector shape of
the cell and by the concentration dependence of Dt (an effect not treated in this chapter). However,
to a reasonable approximation the width of the boundary (approximately the standard deviation
of a Gaussian profile) will be given by eq. (20), < x2 >= 2Dtt.

3.2.5 Dynamic laser light scattering

Much of the modern determination of diffusion coefficients of macromolecules is done by dynamic
laser light scattering (also called quasielastic light scattering or photon correlation spectroscopy)
[15, 16]. As molecules diffuse under the influence of Brownian motion, the electric field Es(t) and
intensity Is(t) = |Es(t)|2 scattered from them fluctuate with time. The time variation thus gives
information on particle motions.

There are three types of fluctuations to be considered in dynamic light scattering experiments.
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1. Occupation number fluctuations are due to fluctuations in the number of particles N in the
scattering volume. From Poisson statistics, we know that these fluctuations are inversely
proportional to

√
N . To have fluctuations at the 1% level, N must be 104 or less in a scat-

tering volume typically 1 mm on a side. This is a very low concentration, hence only very
strong scatterers, such as whole cells, will produce measurable occupation number fluctua-
tions. These are not generally important for macromolecules. Further, since particles must
diffuse a distance of about 1 mm to enter or exit the scattering volume, occupation number
fluctuations are slow, typically on the order of seconds.

2. Amplitude fluctuations result from rotation and internal motions of molecules. In order to be
observable, these motions must have a characteristic length that is not too small compared
to the wavelength λ. Such internal fluctuations are readily observed, if not always readily
interpreted, in the dynamic scattering from large DNA molecules and protein polymers.

3. Most important, phase fluctuations arise from translation of molecule over a distance com-
parable to the wavelength λ. These fluctuations are rapid and observable from molecules
over a very wide range of sizes. The characteristic time scale for phase fluctuations due to
translational diffusion can be estimated from eq. (20). The distance travelled to produce a
measurable change in the phase of the scattered light (i.e. a change in amplitude which is a
significant fraction of the peak-to-trough amplitude) is on the order of λ/10. Thus, eq. (20)
yields t ≈ (λ/10)2/2Dt. With λ0 about 5000 Å in vacuo, corresponding to about 3.8× 10−5

cm in aqueous solution with refractive index n = 1.33, and a typical Dt of 10−7 cm2/s, this
gives t ≈ 7×10−5 seconds. The microsecond to millisecond range for dynamic light scattering
fluctuations is observed for most biological macromolecules. Thus dynamic light scattering
can be used for very rapid measurement of Dt.

The dynamic light scattering equations are derived in a more complete and systematic fashion
in numerous sources (e.g. Berne & Pecora, 1976; Bloomfield & Lim, 1978; Schmitz, 1990; Chu,
1991). The important result is that the autocorrelation function g2(t) of the photocurrent resulting
from the scattered light is

g2(t) = 1 + βe−2q2Dtt (24)

where β is an instrumental constant and q is the scattering vector, (4πn/λ0) sin(θ/2) where θ is
the scattering angle. This equation showns that −2q2Dt is the slope of a semilogarithmic plot of
g2(t)− 1 vs t. Since q2 is known, Dt can be determined.

3.2.6 Fluorescence photobleaching recovery

A useful method for determining 2-dimensional diffusion in cell membranes or in concentrated
solutions is fluorescence photobleaching recovery (FPR), sometimes called fluorescence recovery
after photobleaching (FRAP). The simplest realization of the method, which is all we will discuss
here, is to briefly illuminate a cross-section of fluorescent molecules with a narrow, intense laser
beam under a microscope. The fluorophore may be a protein such as green fluorescent protein,
GFP, perhaps in a genetically engineered construct with another protein of interest. Or it may
be a fluorescent label bound to a protein, nucleic acid, or lipid. If the laser wavelength is in the
absorption band of the fluorophore, some of the molecules exposed to the beam will be “bleached”
(i.e., their fluorescence will be permanently quenched by a photochemical reaction). Then if the
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fluorescence intensity F from the bleached region is monitored by a probe or reading laser beam
(usually the same as the bleaching beam, but greatly attenuated so as not to cause additional
photobleaching), it will initially be found to be less than F before the bleach. However, as time
proceeds, molecules from adjacent regions will diffuse into the bleached region, increasing F until
it eventually recovers its initial value. (If the fluorophores are constrained by attachment to a
cytoskeletal or membrane network, full recovery may not be achieved. This makes FPR a useful
indicator of such attachment in cell biology research.)

In the most common case the laser beam has a Gaussian profile of radius w (the radius at which
the intensity has decreased to e−2 of its central maximum intensity). Then the time-dependence of
the fractional recovery of fluorescence is determined by the function

θ(t) =
1

1 + t/τD
, (25)

where the characteristic recovery time τD is (see eq. (21))

τD =
w2

4Dt
. (26)

3.2.7 Pulsed field gradient NMR

With the increasing availability of high-field NMR spectrometers, the use of pulsed field gradient
NMR to measure translational diffusion of both small molecules and macromolecules has become
common. The basic idea is that if a magnetic field gradient G is applied to the sample in the NMR
probe, in the same direction as the dominant magnetic field H0, the magnetization M will change
as the molecules diffuse to different regions of the gradient.

In the most common realization of the experiment [17], Fourier transform pulse techniques are
used. A four-step sequence is used:

1. 90◦ pulse;

2. linear field gradient pulse of duration δ;

3. 180◦ pulse after time τ ;

4. second, identical, field gradient pulse at time ∆ after the first.

The resulting magnetization, relative to that with no field gradient, is then

M(G)
M(0)

= exp
[
−γ2G2δ2(∆− δ/3)Dt

]
, (27)

where γ is the magnetogyric ratio.

3.3 Rotation

We see by comparing eqs. (5) and (6) that rotational frictional resistance varies as R3 rather than
R; that is, rotation is much more sensitive to small changes in molecular size. This makes it a very
useful probe of small conformational changes. Thanks largely to advances in lasers and electronics,
which can measure processes on the nanosecond to microsecond time scale, methods that measure
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the rotational motion of proteins and nucleic acids have become important in characterizing their
structures in solution. Detection of rotational motion generally depends on differences in optical
properties of biomolecules along their principal molecular axes.

3.3.1 Rotational diffusion coefficients and relaxation times

For simplicity we shall assume that the orientation of the molecule of interest can be described
by a single angle θ. Under the influence of randomizing Brownian motion, a function f(θ, t) of
the orientation of a molecular axis will exponentially decay, or relax, with a characteristic time
constant:

f(θ, t) = f(θ, 0)e−t/τr. (28)

This rotational relaxation time is denoted τr, and is inversely proportional to the rotational diffusion
coefficient Dr, which has units of reciprocal seconds, s−1. The relation between Dr and fr the
rotational frictional coefficient, is the same for rotation as for translation:

Dr =
kBT

fr
. (29)

There are two commonly defined rotational relaxation times, depending on the experiment being
performed. The first, τ (1)

r , is obtained by experiments, such as dielectric relaxation, that directly
measure the orientation, f (1)(θ) = cos(θ), of the molecular axis with respect to an external field.

The second type of relaxation time, τ (2)
r , is obtained in experiments (more common in con-

temporary practice) such as fluorescence anisotropy, electric dichroism, and NMR relaxation, that
measure the orientation function f (2)(θ) = 1

2(3 cos
2(θ)−1). One can show that the relaxation time

of axis a by rotational diffusion about axes b and c is 1/τ (1)
a = Dr,b +Dr,c. For a sphere, with three

equivalent axes,

τ (1)
r =

1
2Dr

=
fr

2kBT
. (30)

Also for a sphere,

τ (2)
r =

1
6Dr

=
fr

6kBT
. (31)

Combining this with eq. (6) and the volume V = 4
3πR

3, we get the elegantly simple result

τ (2)
r =

ηV

kBT
(32)

Since this result was first obtained by Debye, it is sometimes known as the Debye relaxation time.
Results for molecular models of other shapes, such as ellipsoids of revolution and rigid rods, are
given later in this chapter. In all cases it is found that τr varies roughly according to V or R3,
where R is some characteristic linear dimension.

3.3.2 Photoselection: Fluorescence and Triplet State Anisotropy Decay

Techniques that measure rotational motion can be divided into two basic classes: those that orient
molecules by application of an external field, and those that use polarized light to select molecules
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that are already oriented along the polarization direction. The most widely used of the photoselec-
tion techniques is fluorescence anisotropy decay, also known as fluorescence depolarization, which
probes motions in the nanosecond time regime. A thorough discussion is given by Cantor and
Schimmel (1980, pp. 454-465).

To understand photoselection techniques requires the concept of the electronic transition dipole
moment µa, which can be qualitatively understood as the dipole produced by the electronic motion
under the influence of the electric field of the incident light. Fluorescence involves first the absorp-
tion and then the emission of light. If the exciting light is vertically plane-polarized with electric
field E along the z-axis, then only those molecules with a component of their absorption transition
dipole moment µa in the same direction as E will be able to absorb. The amplitude of E along µa

is E · µa = Eµa cos θ, and the intensity of absorption, proportional to the square of the amplitude,
varies as cos2 θ. Thus those molecules with cos θ near 1 will be preferentially excited.

Assume initially that the system is rigid, so that the molecule does not rotate between excitation
and emission, because it is very large or because the solution is effectively frozen. The fluorescence
emission is polarized along the direction of the emission transition dipole moment µe. In the
simplest and most common case, µa and µe are coincident. If the amplitude of the fluorescence
electric field is F , then the component of the intensity of a single emission event in the direction
of the excitation direction will be (Fµe)2 cos2 θ. This is multiplied by the probability that the
molecule was excited in the first place, cos2 θ. Thus the total intensity of fluorescence along the
excitation direction, F‖, will be proportional to < cos4 θ > where the angular brackets denote an
average over the whole population of fluorescent molecules. Likewise, the probability of emission
perpendicular to the excitation direction, F⊥, will be proportional to < cos2 θ sin2 θcos2φ > where
φ is the azimuthal angle and sin θ cosφ is the projection of µe on the x-axis. The values of these
averages are F‖ = 1/5 and F⊥ = 1/15.

Experimentally, one defines the fluorescence anisotropy as the difference between fluorescence
intensity emitted parallel and perpendicular to the exciting field, normalized by the total emitted
intensity (there are one parallel and two perpendicular directions of emission):

A =
F‖ − F⊥
F‖ + 2F⊥

. (33)

The maximum possible value of this quantity, assuming that the molecules are randomly oriented
at excitation, have not rotated at all during the interval between excitation and fluorescence, and
that the absorption and emission transition dipoles are coincident, is calculated as A0 = 2/5 from
the values of F‖ and F⊥ for a rigid system. In the more general case, bfmue and µa may not be
the same, if intersystem crossing has occurred during excitation and vibrational relaxation. If the
angle between µa and µe is ξ, the value of the anisotropy for a rigid system is calculated to be
A0 = (3 cos2 ξ − 1)/5.

Now consider the case in which the molecules rotate in the time between excitation and emis-
sion. This period is typically a few picoseconds to a few nanoseconds, during which the electronic
excitation energy is redistributed within the molecule (primarily by transfer into vibrational modes)
and/or transferred to surrounding solvent, and then emitted as a red-shifted photon as the molecule
drops from excited singlet S1 to ground state singlet S0. The orientations of the molecules change
as they rotate, so the fluorescence anisotropy and polarization will change. In the limiting case
that rotation is very fast compared to emission, all initial orientation information will be lost, so
A will decay to zero.
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In the more general (and more useful) case, rotational relaxation time τr and fluorescence
lifetime τF will be comparable. Then the parallel and perpendicular components of the emission
will decay with time for two reasons: the fraction of molecules in the excited state decays according
to exp(−t/τF ), and the orientation according to exp(−t/τ (2)

r ). The result (Cantor and Schimmel,
p. 461) is

A(t) = (2/5) exp(−t/τ (2)
r )[(3 cos2 ξ − 1)/2]. (34)

Thus the time-dependence of the anisotropy can be used to determine τ (2)
r , and thereby provide

information on molecular size and shape.
If the experiments are done in the steady-state rather than in a time-resolved manner, then one

must average separately over the time dependence of components F‖ and F⊥ before computing the
steady-state anisotropy < A >. The result is conveniently written in reciprocal form as

< A >−1= A−1
0

(
1 +

τF

τ
(2)
r

)
= A−1

0

(
1 + τF

kBT

ηV

)
(35)

Another commonly used measure of anisotropy, particularly in the older literature, is the po-
larization P , defined as

P =
F‖ − F⊥
F‖ + F⊥

. (36)

which has maximum value P0 = 1/2 for a rigid system. Algebraic rearrangement shows that

(
1
P

− 1
3

)−1

=
3
2
A, (37)

so the equation for the steady-state polarization is

(
1
P

− 1
3

)
=
(

1
P0

− 1
3

)(
1 +

τF

τ
(2)
r

)
=
(

1
P0

− 1
3

)(
1 + τF

kBT

ηV

)
(38)

These are known as the Perrin equations (Perrin, 1934). Thus the molecular volume V can be
obtained, if τF is known by independent measurement, by measuring 1/ < A > or 1/ < P > as a
function of T/η. In these experiments, the viscosity is generally varied by changing the temperature
(for water, η changes by 2% for each centigrade degree) or by adding an inert compound such as
sucrose or glycerol to the solution.

The equations in this section are strictly valid only for rigid, spherical molecules. If the molecule
is substantially nonspherical, the expressions become significantly more complicated, owing to the
contributions from rotations about the nonequivalent axes. In the limit, as many as five relaxation
times may enter into the decay of the anisotropy, though it is rare that more than two can be resolved
experimentally. Another complexity arises if the chromophore has substantial independent mobility
within the macromolecule. The measured rotational relaxation time will then be much shorter than
that corresponding to the macromolecular dimensions. On the other hand, approximate equality
of measured and calculated relaxation times indicates that the chromophore moves rigidly with the
macromolecule.
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3.4 Intrinsic viscosity

The viscosity of a fluid reflects its resistance to flow under an applied force. Viscosity is useful in
the study of biopolymers because the addition of large molecules to a solvent increases its viscosity;
the increase depends on the concentration, size, and structure of the polymer. Motion in one layer
of a fluid causes motion in adjoining layers. To move layers with different relative velocities requires
a force: the more viscous, the more force. The quantitative description of this relation was first
enunciated by Newton. Suppose two parallel planes in the fluid each have area A, and are separated
by distance h. If the upper plane moves with velocity v relative to the lower, then the shearing
force F needed to maintain this velocity differential is

F = η
Av

h
. (39)

The coefficient of proportionality, η, is called the viscosity. It can be seen to have units of dyne/cm2-
s, or poise, in honor of the 19th C French physician Poiseuille, who investigated the flow of liquids
in tubes. Water at 20◦C has a viscosity of 0.01 poise, or 1 centipoise.

Two factors influence F : the strength of the force between layers (greater in molasses than in
water, and in water than in air), and the linear extent of the interactions. A cell extract is so viscous
because the entangled network of macromolecules extends from one side of the container to the
other, and the motion of one part of the fluid, e.g. in pouring or stirring, is retarded by interactions
with molecules far away (in regions with different velocities) mediated by intervening molecular
interactions. This suggests that viscosity will decrease as polymer concentration decreases, since the
probability of intermolecular interactions and the spans of intermolecular complexes will decrease.

This molecular picture predicts that bigger polymers, when dissolved in solution, will raise
the viscosity more than smaller molecules since their molecular domain has a greater extent. This
concept was made quantitative by Einstein, who showed that for spheres occupying volume fraction
φ in dilute solution, the solution viscosity relative to solvent viscosity ho is

η = η0

(
1 +

5
2
φ

)
. (40)

The volume fraction (cc polymer/cc solution) can be expressed as the volume occupied by one
gram of hydrated polymer, vh (cc polymer/g polymer), times the weight concentration of polymer
c2 (g polymer/cc solution). Thus eq. (40) can be rearranged to yield

η − η0

η0c2
=

5
2
vh. (41)

It is customary to measure η at several concentrations and extrapolate to c2 = 0. This yields the
intrinsic viscosity [η]:

[η] = lim
c2→0

η − η0

η0c2
=

5
2
vh (42)

for spheres. For non-spherical particles, the factor 5
2 is replaced by a parameter ν > 5

2 . Since
intrinsic viscosity is rarely measured these days, we do not give these results, but refer the reader
to the literature.
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