Introduction to DNA and Protein-DNA interactions

- Karsten Rippe
- DKFZ & Bioquant, Genome Organization & Function
- Bioquant room 641
- Telefon: +49-6221-54-51376
- e-mail: Karsten.Rippe@bioquant.uni-heidelberg.de

Web

http://malone.bioquant.uni-heidelberg.de

http://malone.bioquant.uni-heidelberg.de/teaching/index_teaching.html

DNA Structure

Evidence for the Double Helix

1. Fiber Diffraction data:

- -Helical geometry
- $-3.4 \text{ A}^{\circ} \text{ spacing } (1\text{A}^{\circ} = 10^{-10} \text{ m})$
- -34 A ° pitch
- 2. Structure of dCTP
- 3. Base Tautomerism
- 3. Chargaff rules
- A=T, G=C

10 layer Lines Between Cross Patterns (10 Residues Per turn)

FIGURE 4.9

Evidence for the structure of DNA. This photograph, taken by Rosalind Franklin, shows the x-ray diffraction pattern produced by wet DNA fibers. It played a key role in the elucidation of DNA structure. The cross pattern indicates a helical structure, and the strong spots at top and bottom correspond to a helical rise of 0.34 nm. The layer line spacing is one-tenth of the distance from the center to either of these spots, showing that there are 10 base pairs per repeat.

1A

 β -2'-deoxyribose

Sugar "Pucker" Conformations

Pyrimidines

Thymine (T)

Cytosine (C)

Guanine (G)

Base Tautomerization

Deoxyadenosine (A nucleoside)

Deoxyadenosine 5'-triphosphate (dATP)
(A nucleotide)

Base	Nucleoside	Nucleotide
Adenine	(Deoxy)adenosine	(d)A (mono, di-, tri) phosphate
Guanine	(Deoxy)guanosine	(d)G (mono, di-, tri) phosphate
Thymine	(Deoxy)thymidine	(d)T (mono, di-, tri) phosphate
Cytosine	(Deoxy)cytidine	(d)C (mono, di-, tri) phosphate

Rotation About the N-Glycosidic Bond

A,B DNA

Z DNA (G only)

Phosphodiester Backbone B-DNA: A right Handed double helix Why?

Rise 3.4 ÅMinor Groove Major Groove Width 20 Å

Pitch 34 Å 10.4 bp/turn

Major groove

Minor groove

Adenine: Thymine

Major groove

Minor groove

Guanine: Cytosine

Base Displacement Determines Groove Depth

Z-DNA Phosphate Backbone is Kinked

Table 4.1 Average Structural Parameters for Various Helical Forms

*	A-DNA	B-DNA	Z-DNA
Helix handedness	Right	Right	Left
bp/repeating unit	1	1	2
bp/turn	11	10	12
Helix twist, (°)	32.7	36.0	$-10^a, -50^b$
Rise/bp, (Å)	2.9	3.4	$-3.9^a, -3.5^b$
Helix pitch, (Å)	32	34	45
Base pair inclination, (°)	12	2.4	-6.2
P distance from			
helix axis, (Å)	9.5	9.4	$6.2^a, 7.7^b$
X displacement from bp			
to helix axis, Å	-4.1	0.8	3.0
Glycosidic bond			
orientiation	anti	anti	anti syn ^d
Sugar	C3'-endo	C2'-endo ^e	C2'-endo
conformation	7		C3'-endo ^d
Major groove depth	13.5	8.5	Convex
width, (Å)	2.7	11.7	
Minor groove depth	2.8	7.5	9
width, (Å)	11.0	5.7	4

^aCpG step.

^bGpC step.

^ccytosine.

^dguanine.

^eThere is a range of conformations.

The structure of the B-Z junction Crystal structure of a junction between B-DNA and Z-DNA reveals two extruded bases Sung Chul Ha, Ky Lowenhaupt, Alexander Rich, Yang-Gyun Kim and Kyeong Kyu Kim, Nature 437, 1183-1186 (20 October 2005)

A region of left-handed Z-DNA is connected to right-handed B-DNA

B-Z junction with bound protein from adenosine deaminase ADR1

Question: is all B-DNA structurally identical?

Implications of structural variation

Implications of flexibility

Degrees of freedom:

7 Torsion angles and sugar conformation

Structural Variation Defined by Bases

Propeller Twist Maximizes Base Stacking

Textbook

Naturally Occurring Variations in Roll, Slide, Twist

DNA Stability

Denaturation of DNA for example by heating

Double-stranded DNA

Extremes in pH or high temperature

A-T rich regions denature first

Cooperative unwinding of the DNA strands

Strand separation and formation of single-stranded random coils

Pyrimidine-Purine Steps Have Little Base Stacking

Step Definition: Going along one strand of DNA in 5'to 3' direction Four Possibles: P-Y, P-P, Y-P, Y-Y

Purine-Pyrimidine Steps Have Extensive Base Stacking

Absorbance measurements with a spectrophotometer

$$I = I_0 10^{-\varepsilon cd}$$
 $A = \varepsilon \cdot c \cdot d$

I intensity of light, I_0 incoming light, ϵ extinction coefficient, c concentration, d path length

Figure 14-5

A spectrophotometer. Light from a lamp passes through a monochromator for wavelength selection. Sample and solvent are contained in two cuvettes in a cuvette holder. Light passes through a cuvette and falls on a phototube whose output is recorded on a meter. The cuvette holder is on a slide so that each cuvette can be separately placed in the beam.

Electron micrograph of partially melted DNA

• A-T rich regions melt first, followed by G-C rich regions

DNA melting curve

• T_m is the temperature at the midpoint of the transition

 $\%h = 100 \frac{A(\text{melted species}) - A(\text{duplex})}{A(\text{duplex})}$ hyperchromicity Single-stranded Absorbance Double-stranded

The absorbance at 260 nm of a DNA solution increases when the double helix is melted into single strands.

260

300

220

Values of the Nearest-Neighbor Parameters for DNA in 1 M NaCl

Sequence	ΔH (kcal/ mol)	ΔS (cal/ K·mol)	ΔG (kcal/ mol)
AA/TT	-7,9	-22,2	-1,00
AC/TG	-8,4	-22,4	-1,44
AG/TC	-7,8	-21,0	-1,28
AT/TA	-7,2	-20,4	-0,88
CA/GT	-8,5	-22,7	-1,45
CC/GG	-8,0	-19,9	-1,84
CG/GC	-10,6	-27,2	-2,17
CT/GA	-7,8	-21,0	-1,28
GA/GT	-8,2	-22,2	-1,30
GC/GG	-9,8	-24,4	-2,24
GG/CC	-8,0	-19,9	-1,84
GT/CA	-8,4	-22,4	-1,44
TA/AT	-7,2	-21,3	-0,58
TC/AG	-8,2	-22,2	-1,30
TG/AC	-8,5	-22,7	-1,45
TT/AA	-7,9	-22,2	-1,00
Init.	0	0	0
Init. AT	2,3	4,1	1,03
Init. CG	0,1	-2,8	0,98
symmetric	0	-1,4	0,43
non-symmetric	0	0	0

Predicting Transition Free Energies for DNA duplexes

Scheme II Predicting transition free energies of DNA oligomers

$$\Delta G_{\text{total}} \stackrel{?}{=} -(\Delta g_{\text{i}} + \Delta g_{\text{sym}}) + \Sigma_{\text{x}} \Delta g_{\text{x}}$$

$$\Delta G_{\text{predicted}} = -(5.0 + 0.4) + (2 \times 3.1) + (2 \times 1.6)$$
+ $(2 \times 1.9) + (1 \times 1.5)$

$$\Delta G_{\text{predicted}} = 9.3 \text{ kcal}$$

$$\Delta G_{\text{observed}} = 9.4 \text{ kcal}$$

$$\Delta G_i(\text{total}) = \sum_{i} n_{ij} \Delta G_i + \Delta G(\text{init}) + \Delta G_i(\text{sym})$$

$$T_{\rm M} = \Delta H^{\circ}/(\Delta S^{\circ} + R \ln C_{\rm T})$$

DNA Topology

DNA Unwinding Causes Topological Problems

The "twisting problem"

- DNA is a coiled double helix
- Replication and transcription require local DNA strand separation (melting of DNA).
- Local unwinding of DNA due to strand separation introduces a strain on the surrounding base pairs - they become overwound.

• In closed circular DNA molecules the coils can't run off at the end of the chromosome

Varieties of Supercoiled DNA

Note that all black lines represents double stranded DNA

Nucleosomes

- Nucleosomes look like "beads on a string" under microscope. The beads contain a pair of four histone proteins, H2A, H2B, H3, and H4 (octamer). The string is double stranded DNA;
- The surface of the octamer contain features that guide the course of DNA such that DNA can wrap 1.65 turns around in a left-handed conformation. H1 proteins serves to seal the ends of the DNA and connects consecutive nucleosomes.

DNA supercoiling

• **DNA**:

- coiled in form of a double helix around an axis
- humans 2 m of DNA / cell

Relaxed state

no bending of the DNA

Supercoiling

- coiling of the DNA helix,
- supercoiled DNA is more compact than relaxed DNA
- Condenses DNA which allows faster migration in agarose gels

Underwinding

Underwinding:

- DNA has fewer turns than expected
- DNA is strained

Example:

84 bp = 8 turns (@10.5 bp/ turn)

* Remove 1 turn

84 bp => 7 turns (at 12 bp/ turn)

Overcome problem

- by forming supercoils
- by separating strands

Underwinding

- 1. Every cell underwinds its DNA
- 2. Facilitates strand separation
- 3. Stored form of energy
- 4. Underwound DNA can only be maintained if:
 - the DNA is a closed circular DNA
 - the DNA is bound and stabilized by proteins

Properties of Topoisomerases

Table 12-1
Properties of type I and type II topoisomerases

	Type I		Type II	
Property	E. coliª	Eukaryotic ^b	Gyrase	Eukaryotic
DNA strands cleaved	one	one	two	two
Subunit mass (kDa)	~100	~95	97, 90	~150
Subunits	monomer	monomer	A_2B_2	homodimer
ATP requirement	no	no	yes	yes
Mg ²⁺ requirement	yes	no	yes	yes
DNA-dependent ATPase	no	no	yes	yes
Makes (—) supercoils	no	no	yes	no
Relaxes (—) supercoils	ves	yes	no ^c	yes
Relaxes (+) supercoils	no	yes	yes ^d	yes
Catenation, knotting	yes ^e	yes ^e	yes	yes

^a E. coli topo I and topo III.

^b Yeast TOP3 most likely encodes a type I enzyme with characteristics similar to those of the E. coli rather than the eukaryotic enzymes.

^c Yes in the absence of ATP.

^d By introduction of negative supercoils.

e Requires a nick or gap in one strand of duplex.

Strand Passage Model for Topo I

Covalent Tyrosine-5'P

