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Highlights

• Integration of CNN and gated RNN over multiple scales

• Introduction of normalized focal loss for momentum based optimizers

• Provision of insights on how our extensions affect training and inference

• Quantitative evaluation using a wide spectrum of 2D and 3D real mi-

croscopy image data
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Abstract

Cell segmentation in microscopy images is a common and challenging task. In

recent years, deep neural networks achieved remarkable improvements in the

field of computer vision. The dominant paradigm in segmentation is using

convolutional neural networks, less common are recurrent neural networks. In

this work, we propose a new deep learning method for cell segmentation, which

integrates convolutional neural networks and gated recurrent neural networks

over multiple image scales to exploit the strength of both types of networks. To

increase the robustness of the training and improve segmentation, we introduce

a novel focal loss function. We also present a distributed scheme for optimized

training of the integrated neural network. We applied our proposed method

to challenging data of glioblastoma cell nuclei and performed a quantitative

comparison with state-of-the-art methods. Insights on how our extensions affect

training and inference are also provided. Moreover, we benchmarked our method

using a wide spectrum of all 22 real microscopy datasets of the Cell Tracking

Challenge.
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1. Introduction

Segmentation of prominent structures such as cells in microscopy images is a

frequent and important task. In particular, features computed from cell nucleus

and cytoplasm segmentations are used to determine phenotypes in quantitative

microscopy. Automated quantitative microscopy drives modern biology experi-5

ments generating big data, while manual analysis is too labor intensive or error

prone. In addition, quantitative microscopy has the potential to reduce the time

for diagnostic pathology and improve the quality in clinical routine.

Although many different types of methods for segmentation exist, in re-

cent years, deep learning methods dominate the field of computer vision. Deep10

learning has been successfully used for cell segmentation in microscopy im-

ages (e.g., (Ronneberger et al., 2015; Akram et al., 2017; Sadanandan et al.,

2017; Yi et al., 2018)). Typically, hourglass-shaped Convolutional Neural Net-

works (CNNs) such as the U-Net or Deconvolution Network (Noh et al., 2015) are

used, which aggregate features at multiple image scales. In contrast, Recurrent15

Neural Networks (RNNs) iteratively refine the segmentation result by exploit-

ing the recurrent structure and mimic Conditional Random Fields (CRFs) or

Level Sets (Zheng et al., 2015; Le et al., 2017). Often, RNN approaches are used

in a subsequent step to refine segmentation results from an hourglass-shaped

CNN (Chen et al., 2018). Segmentation using multi-scale feature aggregation20

by CNNs and iterative refinement performed by RNNs have distinct strengths

and weaknesses. For CNNs it has been shown that they are very effective

in capturing hierarchical patterns and extracting abstract features (Lin et al.,

2017a). However, a drawback of standard CNNs is that they handle each pixel

as a separate classification task and do not explicitly include global priors like25

shape. In contrast, RNNs iteratively minimize global energies. Multiple weak

predictions are combined and the final prediction is iteratively improved using

global priors like shape. Therefore, RNNs are robust to local errors and re-

quire less parameters than CNNs. However, current RNN-based approaches for

segmentation (Zheng et al., 2015; Le et al., 2017) incorporate features only at30
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a single scale. Combining iterative refinement with multi-scale feature aggre-

gation and exploiting their strengths could be beneficial. Recently, a CNN for

segmentation of street scenes in video images was proposed, which uses a full-

resolution feature path combined with hierarchical feature aggregation (Pohlen

et al., 2016). However, iterative refinement of features is limited to summing35

up the extracted feature maps of each Full-Resolution Residual Unit (FRRU).

Other approaches perform full-resolution feature extraction using dilated convo-

lutions (Yu and Koltun, 2015; Wollmann and Rohr, 2017). However, with these

approaches undesirable ”checkerboard” artifacts occur (Odena et al., 2016). In

addition, (Yu and Koltun, 2015; Pohlen et al., 2016; Wollmann and Rohr, 2017)40

do not use an RNN for iterative refinement. Generally, deep neural networks

tend to outperform shallow networks (Poggio et al., 2017), but due to non-linear

activation functions and multiplications they suffer from gradient vanishing. In

recent years, Deep Neural Network (DNN) architectures like ResNet (He et al.,

2016) or DenseNet (Huang et al., 2017) have been proposed to improve the gra-45

dient flow. Residual Connections (Drozdzal et al., 2016) and Densely Connected

blocks (Jégou et al., 2017) have been transferred from classification tasks to se-

mantic segmentation.

Despite the effectiveness of deep learning methods dealing with large im-

age datasets of natural scenes like ImageNet or MS COCO, it has been shown50

that training is feasible with relatively small datasets. Common approaches

for training on small datasets are transfer learning, adversarial training, and

data augmentation. For microscopy images, it has been shown that transfer

learning is not very effective, since the properties of the images are quite dif-

ferent from natural images (Liu et al., 2017). Adversarial training improves the55

performance but does not incorporate domain knowledge, which can help to re-

duce overfitting (e.g., Arbelle and Raviv (2018)). In contrast, data augmentation

(e.g., Ronneberger et al. (2015); Wollmann et al. (2018b,a)) is a computational

efficient and effective method to increase the training data set size, incorporate

domain knowledge, and prevent overfitting. However, data augmentation for60

real datasets poses a number of challenges. Enlarging the dataset has to be
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performed with care to improve and not harm the training. In particular, the

used sampling strategy for the data can bias the network to a certain class or

feature. On the other hand, performing transformations like elastic deformation

can lead to degenerated objects. In addition, technical challenges arise, if data65

augmentation is performed with a huge amount of data. Heavy augmentation of

datasets can quickly result in millions of images which exceed terabytes of data

volume, and even simple operations are then computationally demanding. By

naively transferring the generated images to the GPU memory for further pro-

cessing, the capabilities of the GPU are generally not fully exploited. Therefore,70

smart techniques for efficient data streaming are required.

In this work, we introduce a novel deep neural network, which combines both

paradigms of multi-scale feature aggregation of CNNs and iterative refinement

of RNNs. Compared to previous approaches, in our method a convolutional and

a recurrent neural network are integrated to aggregate features from different75

image scales. By employing Densely Connected blocks in the CNN part and

a Gated Recurrent Unit (GRU) in the RNN part of our network, we keep the

number of learnable parameters and feature tensors to a minimum. Since our

network combines a GRU with a U-Net like network, we denote it as GRUU-Net.

We propose a novel focal loss function for momentum-based optimizers, which80

enforces the network to learn separating touching objects. Also, we describe a

framework for performing data augmentation for generating huge amounts of

data. We describe pitfalls and solutions in data handling, sampling the dataset,

and performing transformations of the data. We performed a quantitative com-

parison with state-of-the art methods using challenging real microscopy image85

data of DAPI stained cell nuclei in glioblastoma tissue. Insights into our novel

loss function, the refinement process, and our data augmentation scheme are

provided. In addition, we benchmarked our method using a wide spectrum of

all 22 real 2D and 3D datasets of the Cell Tracking Challenge, and yielded

superior or competitive results for most of the datasets.90
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2. Methods

We propose a novel DNN architecture for cell segmentation, which combines

iterative refinement of feature maps by a Gated Recurrent Unit (GRU) (Cho

et al., 2014) with multi-scale feature aggregation by a U-Net like CNN. Hence,

we call this network GRUU-Net. The network is trained with a normalized pixel-95

wise focal cross-entropy loss to deal with class imbalance and enforce object

separation. In addition, we perform heavy data augmentation by a distributed

scheme. Below, we describe the architecture of the GRUU-Net and the training

procedure.

2.1. Architecture of GRUU-Net100

GRUU-Net has a fully convolutional network architecture as sketched in

Figure 1. The neural network unifies a recurrent processing stream with a pool-

ing stream. Both streams are based on a different paradigm. The recurrent

stream iteratively refines features at full resolution. On the other hand, the

pooling stream extracts high-level features within a large receptive field. The

two streams are capable of exchanging information at each resolution level. To

Figure 1: GRUU-Net architecture. Red circles with an arrow pointing upward/downward de-

note unpooling/pooling. At each scale Full-Resolution Dense Units (FRDUs) extract features,

which are aggregated by a Gated Recurrent Unit (GRU).
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